
Native x86 Decompilation using Semantics-Preserving Structural Analysis
and Iterative Control-Flow Structuring

Edward J. Schwartz
Carnegie Mellon University

Maverick Woo
Carnegie Mellon University

JongHyup Lee
Korea National University of Transportation

David Brumley
Carnegie Mellon University

Abstract

There are many security tools and techniques for analyz-
ing software, but many of them require access to source
code. We propose leveraging decompilation, the study
of recovering abstractions from compiled code, to apply
existing source-based tools and techniques to compiled
programs. A decompiler should focus on two properties
to be used for security. First, it should recover abstractions
as much as possible to minimize the complexity that must
be handled by the security analysis that follows. Second,
it should aim to recover these abstractions correctly.

Previous work in control-flow structuring, an abstrac-
tion recovery problem used in decompilers, does not pro-
vide either of these properties. Specifically, existing struc-
turing algorithms are not semantics-preserving, which
means that they cannot safely be used for decompilation
without modification. Existing structural algorithms also
miss opportunities for recovering control flow structure.
We propose a new structuring algorithm in this paper that
addresses these problems.

We evaluate our decompiler, Phoenix, and our new
structuring algorithm, on a set of 107 real world programs
from GNU coreutils. Our evaluation is an order of
magnitude larger than previous systematic studies of end-
to-end decompilers. We show that our decompiler outper-
forms the de facto industry standard decompiler Hex-Rays
in correctness by 114%, and recovers 30× more control-
flow structure than existing structuring algorithms in the
literature.

1 Introduction

Security analyses are often faster and easier when per-
formed on source code rather than on binary code. For ex-
ample, while the runtime overhead introduced by source-
based taint checkers can be as low as 0.65% [12], the
overhead of the fastest binary-based taint checker is over
150% [8]. In addition, many security analyses described

in the literature assume access to source code. For in-
stance, there are numerous source-based static vulnera-
bility finding tools such as KINT [40], RICH [9], and
Coverity [6], but equivalent binary-only tools are scarce.

In many security scenarios, however, access to source
code is simply not a reasonable assumption. Common
counterexamples include analyzing commercial off-the-
shelf software for vulnerabilities and reverse engineering
malware. The traditional approach in security has been to
directly apply some form of low-level binary analysis that
does not utilize source-level abstractions such as types
and functions [5, 7, 10, 24]. Not surprisingly, reasoning
at such a low level causes binary analysis to be more
complicated and less scalable than source analysis.

We argue that decompilation is an attractive alterna-
tive to traditional low-level binary-based techniques. At
its surface, decompilation is the recovery of a program’s
source code given only its binary. Underneath, decom-
pilation consists of a collection of abstraction recovery
mechanisms such as indirect jump resolution, control flow
structuring, and data type reconstruction, which recover
high-level abstractions that are not readily available in the
binary form. Our insight is that by reusing these mecha-
nisms, we can focus our research effort on designing secu-
rity analyses that take advantage of such abstractions for
accuracy and efficiency. In fact, when taken to an extreme,
we may even use decompilation to leverage an existing
source-based tool—be it a vulnerability scanner [27], a
taint engine [12], or a bug finder [6]—by applying it to
the decompiled program code.

Of course, decompilation is also extremely beneficial
in situations where manual analysis is required. For exam-
ple, practitioners often reverse-engineer program binaries
to understand proprietary file formats, study vulnerabili-
ties fixed in patches, and determine the exploitability of
crashing inputs. Arguably, any one of these tasks becomes
easier when given access to source code.

Unfortunately, current research in decompilation does
not directly cater to the needs of many security applica-

Published in the Proceedings of the 2013 Usenix Security Symposium

tions. A decompiler should focus on two properties to be
used for security. First, it should recover abstractions as
much as possible to minimize the complexity that must
be handled by the actual security analysis that follows.
Second, it should aim to recover these abstractions cor-
rectly. As surprising as it may sound, previous work on
decompilation almost never evaluated correctness. For
example, Cifuentes et al.’s pioneering work [13] and nu-
merous subsequent works [11, 14, 16, 39] all measured
either how much smaller the output C code was in com-
parison to the input assembly, or with respect to some
subjective readability metric.

In this paper, we argue that source can be recovered
in a principled fashion. As a result, security analyses
can better take advantage of existing source-based tech-
niques and tools both in research and practice. Security
practitioners can also recover correct, high-level source
code, which is easier to reverse engineer. In particular,
we propose techniques for building a correct decompiler
that effectively recovers abstractions. We implement our
techniques in a new end-to-end binary-to-C decompiler
called Phoenix1 and measure our results with respect to
correctness and high-level abstraction recovery.

Phoenix makes use of existing research on principled
abstraction recovery where possible. Source code recon-
struction requires the recovery of two types of abstrac-
tions: data type abstractions and control flow abstractions.
Recent work such as TIE [28], REWARDS [29], and
Howard [38] have largely addressed principled methods
for recovering data types. In this paper, we investigate
new techniques for recovering high-level control struc-
ture.

1.1 The Phoenix Structural Analysis Algo-
rithm

Previous work has proposed mechanisms for recovering
high-level control flow based on the structural analysis
algorithm and its predecessors [20, 23, 39]. However,
they are problematic because they (1) do not feature a cor-
rectness property that is necessary to be safely used for
decompilation, and (2) miss opportunities for recovering
control flow structure. Unfortunately, these problems can
cause a security analysis using the recovered control struc-
tures to become unsound or scale poorly. These problems
motivated us to create our own control flow structuring al-
gorithm for Phoenix. Our algorithm is based on structural
analysis, but avoids the problems we identified in earlier

1Phoenix is named in honor of the famous “Dragon Book” [1] on
compilers. According to Chinese mythology, the phoenix is a supreme
bird that complements the dragon (compilation). In Greek mythology,
the phoenix can be reborn from the ashes of its predecessor. Similarly, a
decompiler can recover source code and abstractions from the compiled
form of a binary, even when these artifacts seem to have been destroyed.

work. In particular, we identify a new property that struc-
tural analysis algorithms should have to be safely used for
decompilation, called semantics-preservation. We also
propose iterative refinement as a strategy for recovering
additional structure.

Semantics Preservation Structural analysis [32,
p. 203] is a control flow structuring algorithm that was
originally invented to help accelerate data flow analysis.
Later, decompiler researchers adapted this algorithm to
reconstruct high-level control flow structures such as
if-then-else and do-while from a program’s control flow
graph (see §2.1). We propose that structuring algorithms
should be semantics-preserving to be safely used in
decompilers. A structuring algorithm is semantics-
preserving if it always transforms the input program
to a functionally equivalent program representation.
Semantics-preservation is important for security analyses
to ensure that the analysis of the structured program
also applies to the original binary. Surprisingly, we
discovered that common descriptions of structural
analysis algorithms are not semantics-preserving. For
example, in contrast to our natural loop schema in
Table 4, other algorithms employ a schema that permits
out-going edges (e.g., see [20, Figure 3]). This can
lead to incorrect decompilation, such as the example
in Figure 3. We demonstrate that fixing this and other
schemas to be semantics-preserving increases the number
of utilities that Phoenix is able to correctly decompile by
30% (see §4).

Iterative Refinement When structural analysis algo-
rithms encounter unstructured code, they stop recover-
ing structure in that part of the program. Our algorithm
instead iteratively refines the graph to continue mak-
ing progress. The basic idea is to select an edge from
the graph that is preventing the algorithm from making
progress, and represent it using a goto in the decom-
piled output. This may seem counter-intuitive, since
more gotos implies less structure recovered. However,
by removing the edge from the graph the algorithm can
make more progress, and recover more structure. We
also show how refinement enables the recovery of switch
structures. In our evaluation, we demonstrate that iterative
refinement recovers 30× more structure than structural
analysis algorithms that do not employ iterative refine-
ment (see §4). Missed structure is problematic in se-
curity applications because it can hamper syntax-based
deductions—such as the fact that body will execute ten
times in for (i=0; i<10; i++) {body;}. Control
flow structure is also used to explicitly accelerate some
analyses (e.g., data flow analysis [2, 17]), and failure to
recover structure can undermine the performance of these

Published in the Proceedings of the 2013 Usenix Security Symposium

algorithms. Unfortunately, even recent structuring al-
gorithms such as the one in [20, Algorithm 2] do not
employ refinement in their descriptions, and thus can fail
to recover structure on problematic program sections.

Contributions:

1. We propose a new structural analysis algorithm that
addresses two shortcomings of existing structural
analysis algorithms: (1) they can cause incorrect
decompilation, and (2) they miss opportunities to
recover control flow structure. Our algorithm uses
iterative refinement to recover additional structure,
including switches. We also identify a new property,
semantics-preservation, that control flow structuring
algorithms should have to be safely used in decom-
pilers. We implement and test our algorithm in our
new end-to-end binary-to-C decompiler, Phoenix.

2. We demonstrate that our proposed structural analysis
algorithm recovers 30× more control-flow structure
than existing research in the literature [20, 32, 36],
and 28% more than the de facto industry standard
decompiler Hex-Rays [23]. Our evaluation uses the
107 programs in GNU coreutils as test cases, and
is an order of magnitude larger than any other sys-
tematic end-to-end decompiler evaluation to date.

3. We propose correctness as a new metric for eval-
uating decompilers. Although previous work has
measured the correctness of individual decompiler
components (e.g., type recovery [28] and structure
recovery [20]), surprisingly the correctness of a de-
compiler as a whole has never been measured. We
show in our evaluation that Phoenix successfully de-
compiled over 2× as many programs that pass the
coreutils test suite as Hex-Rays.

2 Overview

Any end-to-end decompiler such as Phoenix is necessarily
a complex project. This section aims to give a high-level
description of Phoenix. We will start by reviewing several
background concepts and then present an overview of
each of the four stages of Phoenix. The remainder of the
paper focuses on our novel structural analysis algorithm,
which is Phoenix’s third stage.

2.1 Background
Control Flow Analysis A control flow graph (CFG) of
a program P is a directed graph G = (N,E,ns,ne). The
node set N contains basic blocks of program statements
in P. Each basic block must have exactly one entrance at
the beginning and one exit at the end. Thus, each time the

If-Then-
Else

c2

¬ c2

c1 ¬ c1

c2

¬ c2

Do-
While

Figure 1: Example of structural analysis.

first instruction of a basic block is executed, the remaining
instructions must also be executed in order. The nodes
ns ∈ N and ne ∈ N represent the entrance and the exit
basic blocks of P respectively. An edge (ni,n j) exists in
the edge set E if ni ∈ N may transfer control to n j ∈ N.
Each edge (ni,n j) has a label ` that specifies the logical
predicate that must be satisfied for ni to transfer control
to n j.

Domination is a key concept in control flow analy-
sis. Let n be any node. A node d dominates n, denoted
d dom n, iff every path in G from ns to n includes d.
Furthermore, every node dominates itself. A node p post-
dominates n, denoted p pdom n, iff every path in G from
n to ne includes p. For any node n other than ns, the im-
mediate dominator of n is the unique node d that strictly
dominates n (i.e., d dom n and d 6= n) but does not strictly
dominate any other node that strictly dominates n. The
immediate post-dominator of n is defined similarly.

Loops are defined through domination. An edge (s,d)
is a back edge iff d dom s. Each back edge (s,d) defines
a natural loop, whose header is d. The natural loop of a
back edge (s,d) is the union of d and the set of nodes that
can reach s without going through d.

Structural Analysis Structural analysis is a control
flow structuring algorithm for recovering high-level con-
trol flow structure such as if-then-else constructs and
loops. Intriguingly, such an algorithm has uses in both
compilation (during optimization) and decompilation (to
recover abstractions). At a high level, structural anal-
ysis matches a set of region schemas over the CFG by
repeatedly visiting its nodes in post-order. Each schema
describes the shape of a high-level control structure such
as if-then-else. When a match is found, all nodes matched
by the schema are collapsed or reduced into a single node
that represents the schema matched. For instance, Figure 1
shows the progression of structural analysis on a simple
example from left to right, assuming that the topmost
node is being visited. In the initial (leftmost) graph, the
top three nodes match the shape of an if-then-else. Struc-
tural analysis therefore reduces these nodes into a single
node that is explicitly labeled as an if-then-else region in
the middle graph. This graph is then further reduced into

Published in the Proceedings of the 2013 Usenix Security Symposium

a do-while loop. A decompiler would use this sequence
of reductions and infer the control flow structure: do {
if (c1) then {...} else {...} } while (c2).

Once no further matches can be found, structural anal-
ysis starts reducing acyclic and cyclic subgraphs into
proper regions and improper regions, respectively. In-
tuitively, both of these regions indicate that no high-level
structure can be identified in that subgraph and thus goto
statements will be emitted to encode the control flow. A
key topic of this paper is how to build a modern structural
analysis algorithm that can refine such regions so that
more high-level structure can be recovered.

SESS Analysis and Tail Regions Vanilla structural
analysis cannot recognize loops containing common C
constructs such as break and continue. For instance,
structural analysis would fail to structure the loop

while (...) { if (...) { body; break; } }.

Engel et al. [20] proposed the SESS (single exit single
successor) analysis to identify regions that have multiple
exits (using break and continue) but share a unique
successor. Such exits can be converted into a tail region
that represents the equivalent control flow construct. In
the above example, body would be reduced to a break

tail region. Without tail regions, structural analysis stops
making progress when reasoning about loops containing
multiple exits.

Although the SESS analysis was proposed to help ad-
dress this problem, the core part of the algorithm, the
detection of tail regions, is left unspecified [20, Algo-
rithm 2, Line 15]. We implemented SESS analysis as
closely to the paper as possible, but noticed that our im-
plementation often stopped making progress before SESS
analysis was able to produce a tail region. This can occur
when regions do not have an unambiguous successor, or
when loop bodies are too complex. Unfortunately, no
structure is recovered for these parts of the program. This
problem motivated the iterative refinement technique of
our algorithm, which we describe in §3.

2.2 System Overview
Figure 2 shows the high-level overview of the approach
that Phoenix takes to decompile a target binary. Like most
previous work, Phoenix uses a number of stages, where
the output of stage i is the input to stage i+1. Phoenix can
fail to output decompiled source if any of its four stages
fails. For this reason we provide an overview of each stage
in this section. The first two stages are based on existing
implementations. The last two use novel techniques and
implementations developed specifically for Phoenix.

CFG
Recovery

Control-Flow
Structure
Recovery

Statement
Translation

Decompiler
Output

Binary

TIE and BAP

Phoenix

Type
Recovery

Figure 2: Decompilation flow of Phoenix. Phoenix con-
tains new implementations for control flow recovery and
statement translation.

edge :: exp

vertex ::= stmt*

stmt ::= var := exp | assert exp | addr address

exp ::= load(exp, exp, exp, τreg)

| store(exp, exp, exp, exp, τreg)

| exp op exp | var | lab(string) | integer

| cast(cast kind, τreg, exp)

Table 1: An abbreviated syntax of the BAP IL used to
label control flow graph vertices and edges.

2.3 Stages I and II—Existing Work
Control Flow Graph Recovery The first stage parses
the input binary’s file format, disassembles the binary, and
creates a control flow graph (CFG) for each function. At
a high level, a control flow graph is a program representa-
tion in which vertices represent basic blocks, and edges
represent possible control flow transitions between blocks.
(See §2.1 for more detail.) While precisely identifying
binary code in an executable is known to be hard in the
general case, current algorithms have been shown to work
well in practice [4, 5, 24, 25].

There are mature platforms that already implement
this step. We use the CMU Binary Analysis Platform
(BAP) [10]. BAP lifts sequential x86 assembly instruc-
tions in the CFG into an intermediate language called BIL,
whose syntax is shown in Table 1 (see [10]). As we will
see, the end goal of Phoenix is to decompile this language
into the high-level language shown in Table 2.

Variable and Type Recovery The second stage recov-
ers individual variables from the binary code, and assigns
them types. Phoenix uses TIE [28] to perform this task.
TIE runs Value Set Analysis (VSA) [4] to recover vari-
able locations. TIE then uses a static, constraint-based
type inference system similar to the one used in the ML
programming language [31]. Roughly speaking, each
statement imposes some constraints on the type of vari-
ables involved. For example, an argument passed to a
function that expects an argument of type T should be
of type T , and the denominator in a division must be an

Published in the Proceedings of the 2013 Usenix Security Symposium

integer and not a pointer. The constraints are then solved
to assign each variable a type.

2.4 Stage III—Control-Flow Structure Re-
covery

The next stage recovers the high-level control flow struc-
ture of the program. The input to this stage is an assembly
program in CFG form. The goal is to recover high-level,
structured control flow constructs such as loops, if-then-
else and switch constructs from the graph representation.
A program or construct is structured if it does not utilize
gotos. Structured program representations are preferred
because they help scale program analysis [32] and make
programs easier to understand [19]. The process of re-
covering a structured representation of the program is
sometimes called control flow structure recovery or con-
trol flow structuring in the literature.

Although control flow structure recovery is similar in
name to control flow graph recovery (stage I), the two are
very different. Control flow graph recovery starts with a
binary program, and produces a control flow graph repre-
sentation of the program as output. Control flow structure
recovery takes a control flow graph representation as in-
put, and outputs the high-level control flow structure of
the program, for instance:

while (...) { if (...) {...} }.

The rest of this paper will only focus on control flow
structuring and not control flow graph reconstruction.

Structural analysis is a control flow structuring algo-
rithm that, roughly speaking, matches predefined graph
schemas or patterns to the control flow constructs that cre-
ate the patterns [32]. For example, if a structural analysis
algorithm identifies a diamond-shape in a CFG, it outputs
an if-then-else construct, because if-then-else statements
create diamond-shaped subgraphs in the CFG.

However, using structural analysis in a decompiler is
not straightforward. We initially tried implementing the
most recent algorithm in the literature [20] in Phoenix. We
discovered that this algorithm, like previous algorithms,
can (1) cause incorrect decompilation, and (2) miss op-
portunities for recovering structure. These problems moti-
vated us to develop a new structural analysis algorithm for
Phoenix which avoids these pitfalls. Our algorithm has
two new features. First, our algorithm employs iterative
refinement to recover more structure than previous algo-
rithms. Our algorithm also features semantics-preserving
schemas, which allows it to be safely used for decompila-
tion. These topics are a primary focus of this paper, and
we discuss them in detail in §3.

prog ::= (varinfo*, func*)

func ::= (string, varinfo, varinfo, stmt*)

stmt ::= var := exp | Goto(exp) | If exp then stmt else stmt

| While(exp, stmt) | DoWhile(stmt, exp)

| For(stmt, exp, stmt)

| Sequence(stmt*)

| Switch(exp,stmt*)

| Case(exp,stmt)

| Label(string)

| Nop

Table 2: An abbreviated syntax of the HIL.

2.5 Stage IV—Statement Translation and
Outputting C

The input to the next stage of our decompiler is a CFG
annotated with structural information, which loosely maps
each vertex in the CFG to a position in a control construct.
What remains is to translate the BIL statements in each
vertex of the CFG to a high-level language representation
called HIL. Some of HIL’s syntax is shown in Table 2.

Although most statements are straightforward to trans-
late, some require information gathered in prior stages of
the decompiler. For instance, to translate function calls,
we use VSA to find the offset of the stack pointer at the
call site, and then use the type signature of the called
function to determine how many arguments should be
included. We also perform optimizations to make the
final source more readable. There are two types of opti-
mizations. First, similar to previous work, we perform
optimizations to remove redundancy such as dead-code
elimination [13]. Second, we implement optimizations
that improve readability, such as untiling.

During compilation a compiler uses a transformation
called tiling to reduce high-level program statements into
assembly statements. At a high level, tiling takes as in-
put an abstract syntax tree (AST) of the source language
and produces an assembly program by covering the AST
with semantically equivalent assembly statements. For
example, given:

x = (y+z)/w

tiling would first cover the expression y+ z with the add
instruction, and then the division with the div instruction.
Tiling will typically produce many assembly instructions
for a single high-level statement.

Phoenix uses an untiling algorithm to improve read-
ability. Untiling takes several statements and outputs an
equivalent high-level source statement. For instance, at a
low-level, High1 [a&b] means to extract the most signifi-
cant bit from bitwise-anding a with b. This may not seem
like a common operation used in C, but it is equivalent to

Published in the Proceedings of the 2013 Usenix Security Symposium

x = 1

x ≠ 1y ≠ 2

y = 2

x = 1
y = 2

Loop
If-Then-

Else

Figure 3: An example of how structural analysis can fail
without semantics-preservation.

the high-level operation of computing a <s 0 && b <s 0
(i.e., both a and b are less than zero when interpreted
as signed integers). Phoenix uses about 20 manually
crafted untiling patterns to simplify instructions emitted
by gcc’s code generator. These patterns only improve
the readability of the source output, and do not influence
correctness or control-flow structure recovery. The output
of the statement translation phase is a HIL program.

The final stage in Phoenix is an analysis that takes the
HIL representation of the program as input. In this paper,
we use an analysis that translates HIL into C, in order to
test Phoenix as a binary-to-C decompiler.

3 Semantics-Preserving Structural Analy-
sis and Iterative Control-Flow Structur-
ing

In this section we describe our proposed structural anal-
ysis algorithm. Our algorithm builds on existing work
by adding iterative refinement and semantics-preserving
schemas. Before we discuss the details of our algorithm,
we highlight the importance of these additions.

Semantics Preservation Structural analysis was origi-
nally invented to scale data flow analysis by summarizing
the reachability properties of a program’s CFG. Later,
decompiler researchers adapted structural analysis and its
predecessor, interval analysis, to recover the control flow
structure of decompiled programs [15, 23].

Unfortunately, structural analysis can identify control
flow that is consistent with a graph’s reachability, but is
inconsistent with the graph’s semantics.

Such an error from structural analysis is demonstrated
in Figure 3. Structural analysis would identify the loop in
the leftmost graph and reduce it to a single node represent-
ing the loop, thus producing the diamond-shaped graph
shown in the middle. This graph matches the schema for
an if-then-else region, which would also be reduced to
a single node. Finally, the two remaining nodes would

then be reduced to a sequence node (not shown), at which
point structural analysis is finished. This would be correct
for data flow analysis, which only depends on reachabil-
ity. However, the first node reduction is not semantics-
preserving. This is easy to see for the case when both
x = 1 and y = 2 hold. In the original graph, the first loop
exit would be taken, since x = 1 matches the first exit
edge’s condition. However, in the middle graph, both exit
edges can be taken.

Such discrepancies are a problem in security, because
they can unintentionally cause unsoundness in analyses.
For example, an otherwise sound bug checker, when ap-
plied to the program in Figure 3, could state that a bug is
present, even if the original program had no bugs.

To avoid unintentional unsoundness, a structural anal-
ysis algorithm should preserve the semantics of a CFG
during each reduction. Otherwise the recovered control
flow structure can become inconsistent with the actual
control flow in the binary. Most schemas in structural
analysis [32, p. 203] preserve semantics, but the natural
loop schema is one that does not. A natural loop is a
generalized definition of a single-entrance loop that can
have multiple exits. The loop in Figure 3 is a natural loop,
for example, because it has one entrance and two exits.
We demonstrate that fixing the schemas in our algorithm
to be semantics-preserving increases the number of utili-
ties Phoenix correctly decompiles by 30% (see §4). We
describe these modifications in the upcoming sections.

Iterative Refinement At a high level, refinement is the
process of removing an edge from a CFG by emitting a
goto in its place, and iterative refinement refers to the
repeated application of refinement until structuring can
progress. This may seem counter-intuitive, since adding a
goto seems like it would decrease the amount of structure
recovered. However, the removal of a carefully-chosen
edge can potentially allow a schema to match the refined
CFG, thus enabling the recovery of additional structure.
(We describe which edges are removed in the following
sections.) The alternative to refinement is to recover no
structure for problematic parts of the CFG. We show that
Phoenix emits 30× more gotos (from 40 to 1,229) when
iterative refinement is disabled.

Recovering structure is important for two reasons. First,
structuredness has been shown to help scale program
analysis in general [32]. In addition, some analyses use
syntactic patterns to find facts, which relies on effective
structure recovery. For example, a bug checker might
conclude that there is no buffer overflow in
char b [1 0] ;
i n t i = 0 ;
whi le (i < 10) {

b [i] = 0 ;
i ++;

}

Published in the Proceedings of the 2013 Usenix Security Symposium

by syntactically discovering the induction variable i and
the loop invariant i < 10. If the structuring algorithm
does not recover the while loop, and instead represents
this loop using gotos, the bug checker could be unable to
reason that the loop is safe, and output a false positive.

3.1 Algorithm Overview
We focus on the novel aspects of our algorithm in this pa-
per and refer readers interested in any structural analysis
details elided to standard sources [32, p. 203].

Like vanilla structural analysis, our algorithm visits
nodes in post-order in each iteration. Intuitively, this
means that all descendants of a node will be visited (and
hence had the chance to be reduced) before the node itself.
The algorithm’s behavior when visiting node n depends
on whether the region at n is cyclic (has a loop) or not.
For an acyclic region, the algorithm tries to match the
subgraph at n to one of the acyclic schemas (§3.2). If
there is no match, and the region is a switch candidate,
then it attempts to refine the region at n into a switch
region (§3.4). If n is cyclic, the algorithm compares the
region at n to the cyclic schemas (§3.5). If this fails, it
refines n into a loop (§3.6). If neither matching or refine-
ment make progress, the current node n is then skipped
for the current iteration of the algorithm. If there is an
iteration in which all nodes are skipped, i.e., the algo-
rithm makes no progress, then the algorithm employs a
last resort refinement (§3.7) to ensure that progress can
be made.

3.2 Acyclic Regions
The acyclic region types supported by Phoenix correspond
to the acyclic control flow operators in C: sequences, ifs,
and switches. The schemas for these regions are shown
in Table 3. For example, the Seq[n1, · · · ,nk] region con-
tains k regions that always execute in the listed sequence.
IfThenElse[c, n, nt, nf] denotes that nt is executed after n
when condition c holds, and otherwise nf is executed.

Our schemas match both shape and the boolean pred-
icates that guard execution of each node, to ensure se-
mantics preservation. These conditions are implicitly
described using meta-variables in Table 3, such as c and
¬c. The intuition is that shape alone is not enough to
distinguish which control structure should be used in de-
compilation. For instance, a switch for cases x = 2 and
x = 3 can have the diamond shape of an if-then-else, but
we would not want to mistake a switch for an if-then-
else because the semantics of if-then-else requires the
outgoing conditions to be inverses.

3.3 Tail Regions and Edge Virtualization
When no subgraphs in the CFG match known schemas,
the algorithm is stuck and the CFG must be refined before
more structure can be recovered. The insight behind
refinement is that removing an edge from the CFG may
allow a schema to match, and iterative refinement refers
to the repeated application of refinement until a match is
possible. Of course, each edge in the CFG represents a
possible control flow, and we must represent this control
flow in some other way to preserve the program semantics.
We call removing the edge in a way that preserves control
flow virtualizing the edge, since the decompiled program
behaves as if the edge was present, even though it is not.

In Phoenix, we virtualize an edge by collapsing the
source node of the edge into a tail region (see §2.1). Tail
regions explicitly denote that there should be a control
transfer at the end of the region. For instance, to virtualize
the edge (n1,n2), we remove the edge from the CFG,
insert a fresh label l at the start of n2, and collapse n1
to a tail region that denotes there should be a goto l
statement at the end of region n1. Tail regions can also be
translated into break or continue statements when used
inside a switch or loop. Because the tail region explicitly
represents the control flow of the virtualized edge, it is
safe to remove the edge from the graph and ignore it when
doing future pattern matches.

3.4 Switch Refinement
If the subgraph at node n fails to match a known schema, it
may be a switch candidate. Switch candidates are regions
that would match a switch schema in Table 3 but contain
extra edges. A switch candidate can fail to match the
switch schema if it has extra incoming edges or multiple
successors. For instance, the nodes in the IncSwitch[·]
box in Figure 4 would not be identified as an IncSwitch[·]
region because there is an extra incoming edge to the
default case node.

A switch candidate is refined by first virtualizing in-
coming edges to any node other than the switch head.
The next step is to ensure there is a single successor of
all nodes in the switch. The immediate post-dominator
of the switch head is selected as the successor if it is the
successor of any of the case nodes. Otherwise, the node
that (1) is a successor of a case node, (2) is not a case
node itself, and (3) has the highest number of incoming
edges from case nodes is chosen as the successor. After
the successor has been identified, any outgoing edge from
the switch that does not go to the successor is virtualized.

After refinement, a switch candidate is usually col-
lapsed to a IncSwitch[·] region. For instance, a common
implementation strategy for switches is to redirect inputs
handled by the default case (e.g., x > 20) to a default

Published in the Proceedings of the 2013 Usenix Security Symposium

n1

…

nk

Seq[n1, · · · ,nk]: A block of sequential
regions that have a single predecessor
and a single successor.

n

nt nf

¬ cc
IfThenElse[c, n, nt, nf]: If-then-else re-
gion.

n

nt ¬ c

c

IfThen[c, n, nt]: If-then region.

n

n1 n2

ckc1

nk

c2
…

IncSwitch[n, (c1,n1), · · · ,(ck,nk)]: In-
complete switch region. The outgoing
conditions are pairwise disjoint and sat-
isfy

∨
i∈[1,k] ci 6= true.

n

n1 n2

ckc1

nk

c2
…

Switch[n, (c1,n1), · · · ,(ck,nk)]: Com-
plete switch region. The outgoing con-
ditions are pairwise disjoint and satisfy∨

i∈[1,k] ci = true.

Table 3: Acyclic regions.

node, and use a jump table for the remaining cases (e.g.,
x ∈ [0,20]). This relationship is depicted in Figure 4,
along with the corresponding region types. Because the
jump table only handles a few cases, it is recognized as an
IncSwitch[·]. However, because the default node handles
all other cases, together they constitute a Switch[·].

3.5 Cyclic Regions
If the subgraph at node n is cyclic, the algorithm tries to
match a loop at n to one of the cyclic loop patterns. It is
possible for a node to be the loop header of multiple loops.
For instance, nested do-while loops share a common loop
header. Distinct loops at node n can be identified by
finding back edges pointing to n (see §2.1). Each back
edge (nb,n) defines a loop body consisting of the nodes
that can reach nb without going through the loop header,
n. The loop with the smallest loop body is reduced first.
This must happen before the larger loops can match the
cyclic region patterns, because there is no schema for
nested loops.

As shown in Table 4, there are three types of loops.
While[·] loops test the exit condition before executing the
loop body, whereas DoWhile[·] loops test the exit condi-
tion after executing the loop body. If the exit condition
occurs in the middle of the loop body, the region is a nat-

Default
case

Fall
through

Bypassing

IncSwitch[•]

Switch[•]

Figure 4: Complete and incomplete switches.

b

¬ c
c

h

While[c,h,s,b]: A while loop.

b
¬ c

c

h

DoWhile[c,h,b] : A do-while loop.

b

h

e1

e2

NatLoop[h,b,e1 · · ·ek] : A natural loop.
Note that there are no edges leaving
the loop; outgoing edges must be vir-
tualized during refinement to match this
schema.

Table 4: Cyclic regions.

ural loop. Natural loops do not represent one particular C
looping construct, but can be caused by code such as

while (1) { body1; if (e) break; body2; }

Notice that our schema for natural loops contains no out-
going edges from the loop. This is not a mistake, but is
required for semantics-preservation. Because NatLoop[·]
regions are decompiled to

while (1) {...},

which has no exits, the body of the loop must trigger any
loop exits. In Phoenix, the loop exits are represented by
a tail region, which corresponds to a goto, break, or
continue in the decompiled output. These tail regions
are added during loop refinement, which we discuss next.

3.6 Loop Refinement
If any loops were detected with loop header n that did
not match a loop schema, loop refinement begins. Cyclic
regions may fail to match loop schemas because (1) there

Published in the Proceedings of the 2013 Usenix Security Symposium

1 i n t f (void) {
2 i n t a = 4 2 ;
3 i n t b = 0 ;
4 whi le (a) {
5 i f (b) {
6 p u t s (” c ”) ;
7 break ;
8 } e l s e {
9 p u t s (” d ”) ;

10 }
11 a−−;
12 b ++;
13 }
14 p u t s (” e ”) ;
15 re turn 0 ;
16 }

(a) Original source code

1 t r e g 3 2 f (void) {
2 t r e g 3 2 v a r 2 0 = 4 2 ;
3 t r e g 3 2 v a r 2 4 ;
4 f o r (v a r 2 4 = 0 ; v a r 2 0 != 0 ;
5 v a r 2 4 = v a r 2 4 + 1) {
6 i f (v a r 2 4 != 0) {
7 p u t s (” c ”) ;
8 break ;
9 }

10 p u t s (” d ”) ;
11 v a r 2 0 = v a r 2 0 − 1 ;
12 }
13 p u t s (” e ”) ;
14 re turn 0 ;
15 }

(b) Phoenix decompiled output of (a)
with new loop membership definition

1 t r e g 3 2 f (void)
2 {
3 t r e g 3 2 v a r 2 0 = 4 2 ;
4 t r e g 3 2 v a r 2 4 ;
5 f o r (v a r 2 4 = 0 ;
6 v a r 2 0 != 0 ; v a r 2 4 = v a r 2 4 + 1)
7 {
8 i f (v a r 2 4 != 0) goto l a b 1 ;
9 p u t s (” d ”) ;

10 v a r 2 0 = v a r 2 0 − 1 ;
11 }
12 l a b 2 :
13 p u t s (” e ”) ;
14 re turn 0 ;
15 l a b 1 :
16 p u t s (” c ”) ;
17 goto l a b 2 ;
18 }

(c) Phoenix decompiled output of (a)
without new loop membership definition

Figure 5: Loop refinement with and without new loop membership definition.

are multiple entrances to the loop, (2) there are too many
exits from the loop, or (3) the loop body cannot be col-
lapsed (i.e., is a proper region).

The first step of loop refinement is to ensure the loop
has a single entrance (nodes with incoming edges from
outside the loop). If there are multiple entrances to the
loop, the one with the most incoming edges is selected,
and incoming edges to the other entrances are virtualized.

The next step is to identify the type of loop. If there is
an exit edge from the loop header, the loop is a While[·]
candidate. If there is an outgoing edge from the source
of the loop’s back edge (see §2.1), it is a DoWhile[·]
candidate. Otherwise, any exit edge is selected and the
loop is considered a NatLoop[·] candidate. The exit edge
determines the successor of the loop, i.e., the statement
that is executed immediately after the loop. The successor
in turn determines which nodes are lexically contained in
the loop.

Phoenix virtualizes any edge leaving the lexically con-
tained loop nodes other than the exit edge. Edges to the
loop header use the continue tail regions, while edges
to the loop successor use the break regions. Any other
virtualized edge becomes a goto.

In our first implementation, we considered the lexi-
cally contained nodes to be the loop body defined by the
loop’s back edge [32]. However, we found this definition
introduced goto statements when the original program
had break statements, as in Figure 5(a). The puts("c")
statement is not in the loop body according to the stan-
dard definition, because it cannot reach the loop’s back
edge, but it is lexically contained in the loop. Obviously,
a break statement must be lexically contained inside the
loop body, or there would be no loop to break out of.

Our observation is that the nodes lexically contained in
the loop should intuitively consist of the loop body and

any nodes that execute after the loop body but before the
successor. More formally, this corresponds to the loop
body, and the nodes that are dominated by the loop header,
excluding any nodes reachable from the loop’s succes-
sor without going through the loop header. For example,
puts("c") in Figure 5(b) is considered as a node that
executes between the loop body and the successor, and
thus Phoenix places it lexically inside the loop. When
Phoenix uses the standard loop membership definition
used in structural analysis, Phoenix outputs gotos, as
in Figure 5(c). In our evaluation (§4), we show that en-
abling the new loop membership definition decreased the
numbers of gotos Phoenix emitted by 45% (73 to 40).

The last loop refinement step is to remove edges that
may prevent the loop body from being collapsed. This
can happen, for instance, when a goto was used in the
input program. This step is only performed if the prior
loop refinement steps did not remove any edges during
the latest iteration of the algorithm. For this, we use the
last resort refinement on the loop body.

3.7 Last Resort Refinement
If the algorithm does not collapse any nodes or perform
any refinement during an iteration, Phoenix removes an
edge in the graph to allow it to make progress. We call
this process the last resort refinement, because it has the
lowest priority, and always allows progress to be made.
Last resort refinement prefers to remove edges whose
source does not dominate its target, nor whose target
dominates its source. These edges can be thought of as
cutting across the dominator tree. By removing them, the
edges that remain reflect more structure.

Published in the Proceedings of the 2013 Usenix Security Symposium

4 Evaluation

In this section, we describe the results of our experiments
on Phoenix. At a high level, these results demonstrate that
Phoenix is suitable for use in program analysis. Specifi-
cally, we show that the techniques employed by Phoenix
lead to significantly more correct decompilation and more
recovered structure than the de facto industry standard
Hex-Rays. Phoenix was able to decompile 114% more
utilities that passed the entire coreutils test suite than
Hex-Rays (60 vs 28). Our results show that employing
semantics-preserving schemas increased correctness by
30% (from 46 to 60). We attribute most remaining correct-
ness errors in Phoenix to type recovery (see §5). Phoenix
was able to structure the control flow for 8,676 functions
using only 40 gotos. This corresponds to recovering 30×
more structure (40 gotos vs 1,229) than structural analysis
without iterative refinement.

4.1 Phoenix Implementation
Our implementation of Phoenix consists of an extension
to the BAP framework. We implemented it in OCaml, to
ease integration with BAP, which is also implemented in
OCaml. Phoenix alone consists of 3,766 new lines of code
which were added to BAP. Together, the decompiler and
TIE comprise 8,443 lines of code. For reference, BAP
consisted of 29,652 lines of code before our additions.
We measured the number of lines of code using David A.
Wheeler’s SLOCCount utility.

4.2 Metrics
We propose two quantitative dimensions for evaluating
the suitability of decompilers for program analysis, and
then evaluate Phoenix on them:

• Correctness. Correctness measures whether the de-
compiled output is equivalent to the original binary
input. If a decompiler produces output that does not
actually reflect the behavior of the input binary, it
is of little utility in almost all settings. For program
analysis, we want decompilers to be correct so that
the decompiler does not introduce imprecision. In
our experiments we utilize high-coverage tests to
measure correctness.

• Structuredness. Recovering control flow structure
helps program analysis and humans alike. Structured
code is easier for programmers to understand [19],
and helps scale program analysis in general [32].
Therefore, we propose that decompiler output with
fewer unstructured control flow commands such as
goto are better.

The benefit of our proposed metrics is that they can be
evaluated quantitatively and thus can be automatically
measured. These properties makes them suitable for an
objective comparison of decompilers.

Existing Metrics Note that our metrics are vastly differ-
ent than those appearing in previous decompiler work. Ci-
fuentes proposed using the ratio of the size of the decom-
piler output to the initial assembly as a “compression ratio”
metric, i.e., 1− (LOC decompiled/LOC assembly) [13].
The idea was the more compact the decompiled output is
than the assembly code, the easier it would be for a hu-
man to understand the decompiled output. However, this
metric side-steps whether the decompilation is correct or
even compilable. A significant amount of previous work
has proposed no metrics. Instead, they observed that the
decompiler produced output, or had a manual qualitative
evaluation on a few, small examples [11, 13, 21, 22, 39].
Previous work that does measure correctness [20, 28] only
focuses on a small part of the decompilation process, e.g.,
type recovery or control flow structuring. However, it
does not measure end-to-end correctness of the decom-
piler as a whole.

4.3 Coreutils Experiment Overview
We tested Phoenix on the GNU coreutils 8.17 suite
of utilities. coreutils consists of 1072 mature, stan-
dard programs used on almost every Linux system.
coreutils also has a suite of high-coverage tests that
can be used to measure correctness. Though prior work
has studied individual decompiler components on a large
scale (see §6), to the best of our knowledge, our evalua-
tion on coreutils is an order of magnitude larger than
any other systematic end-to-end decompiler evaluation in
which specific metrics were defined and measured.

Tested Decompilers In addition to Phoenix, we tested
the latest publicly available version of the academic de-
compiler Boomerang [39] and Hex-Rays [23], the de facto
industry standard decompiler. We tested the latest Hex-
Rays version, which is 1.7.0.120612 as of this writing.

We also considered other decompilers such as
REC [35], DISC [26], and dcc [13]. However, these
compilers either produced pseudo-code (e.g., REC), did
not work on x86 (e.g., dcc), or did not have any documen-
tation that suggested advancements beyond Boomerang
(e.g., DISC).

2The number of utilities built depends on the machine that
coreutils is compiled on. This is the number applicable to our testing
system, which ran Ubuntu 12.04.1 x86-64. We compiled coreutils in
32-bit mode because the current Phoenix implementation only supports
32-bit binaries.

Published in the Proceedings of the 2013 Usenix Security Symposium

We encountered serious problems with both
Boomerang and Hex-Rays in their default configurations.
First, Boomerang failed to produce any output for all but
a few coreutils programs. Boomerang would get stuck
while decompiling one function, and would never move
on to other functions. We looked at the code, but there
appeared to be no easy or reasonable fix to enable some
type of per-function timeout mechanism. Boomerang is
also no longer actively maintained. Second, Hex-Rays
did not output compliant C code. In particular, Hex-Rays
uses non-standard C types and idioms that only Visual
Studio recognizes, and causes almost every function to
fail to compile with gcc. Specifically, the Hex-Rays
website states: “[...] the produced code is not supposed to
be compilable and many compilers will complain about it.
This is a deliberate choice of not making the output 100%
compilable because the goal is not to recompile the code
but to analyze it.” Even if Hex-Rays output is intended
to be analyzed rather than compiled, it should still be
correct modulo compilation issues. After all, there is
little point to pseudo-code if it is semantically incorrect.

Because Hex-Rays was the only decompiler we tested
that actually produced output for real programs, we in-
vestigated the issue in more detail and noticed that the
Hex-Rays output was only uncompilable because of the
Visual Studio idioms and types it used. In order to offer
a conservative comparison of Phoenix to existing work,
we wrote a post-processor for Hex-Rays that translates
the Hex-Rays output to compliant C. The translation is
extremely straightforward. For example, one of the trans-
lations is that types such as unsigned intN must be
converted to uintN t3. All experiments are reported with
respect to the post-processed Hex-Rays output. We stress
this is intended to make the comparison more fair: with-
out the post-processing Hex-Rays output fails to compile
using gcc.

4.4 Coreutils Experiment Details
4.4.1 Setup

Testing decompilers on real programs is difficult because
they are not capable of decompiling all functions. This
means that we cannot decompile every function in a bi-
nary, recompile the resulting source, and expect to have
a working binary. However, we would like to be able to
test the functions that can be decompiled. To this end, we
propose the substitution method.

The goal of the substitution method is to produce a
recompiled binary that consists of a combination of orig-

3Although it seems like this should be possible to implement using
only a C header file containing some typedefs, a typedef has its qual-
ifiers fixed. For instance, typedef int t is equivalent to typedef

signed int t, and thus the type unsigned t is not allowed because
unsigned signed int is contradictory.

inal source code and decompiled source code. We im-
plemented the substitution method by using CIL [33] to
produce a C file for each function in the original source
code. We compiled each C file to a separate object file.
We also produced object files for each function emitted
by the decompiler in a similar manner. We then created
an initial recompiled binary by linking all of the original
object files (i.e., object files compiled from the original
source code) together to produce a binary. We then iter-
atively substituted a decompiler object file (i.e., object
files compiled from the decompiler’s output) for its cor-
responding original object file. If linking this new set
of object files succeeded without an error, we continued
using the decompiler object file in future iterations. Oth-
erwise we reverted to using the original object file. For
our experiments, we produced a recompiled binary for
each decompiler and utility combination.

Of course, for fairness, we must ensure that the recom-
piled binaries for each decompiler have approximately
the same number of decompiled functions, since non-
decompiled functions use the original function defini-
tion from the coreutils source code, which presumably
passes the test suite and is well-structured. The number
of recompilable functions output by each decompiler is
broken down by utility in Figure 6. Phoenix recompiled
10,756 functions in total, compared to 10,086 functions
for Hex-Rays. The Phoenix recompiled binaries consist
of 82.2% decompiled functions on average, whereas the
Hex-Rays binaries contain 77.5%. This puts Phoenix at
a slight disadvantage for the correctness tests, since it
uses fewer original functions. Hex-Rays did not produce
output after running for several hours on the sha384sum
and sha512sum utilities. Phoenix did not completely fail
on any utilities, and was able to decompile 91 out of 110
functions (82.7%) for both sha384sum and sha512sum.
(These two utilities are similar). We discuss Phoenix’s
limitations and failure modes in §5.

4.4.2 Correctness

We test the correctness of each recompiled utility by run-
ning the coreutils test suite with that utility and orig-
inal versions of the other utilities. We do this because
the coreutils test suite is self-hosting, that is, it uses
its own utilities to set up the tests. For instance, a test for
mv might use mkdir to setup the test; if the recompiled
version of mkdir fails, we could accidentally blame mv

for the failure, or worse, incorrectly report that mv passed
the test when in reality the test was not properly set up.

Each tested utility U can either pass all tests, or fail.
We do not count the number of failed tests, because many
utilities have only one test that exercises them. We have
observed decompiled utilities that crash on every execu-
tion and yet fail only a single test. Thus, it would be

Published in the Proceedings of the 2013 Usenix Security Symposium

0

50

100

150

200

Utility

N
um

be
r

of

R
ec

om
pi

le
d

F
un

ct
io

ns
Decompiler

HexRays

Phoenix

Figure 6: The number of functions that were decompiled and recompiled by each decompiler, broken down by utility.
Hex-Rays failed on two utilities for unknown reasons.

Phoenix HR

Correct utilities recompiled 60 28
Correct utilities recompiled (semantics-
preservation disabled)

46 n/a

Percentage recompiled functions (cor-
rect utilities only)

85.4% 73.8%

Table 5: Correctness measurements for the coreutils

experiment. These results includes two utilities for which
Hex-Rays recompiled zero functions (thus trivially pass-
ing correctness).

misleading to conclude that a recompiled program per-
formed well by “only” failing one test.

The results of the correctness tests are in Table 5. To
summarize, Hex-Rays recompiled 28 utilities that passed
the coreutils test suite. Phoenix was able to recompile
60 passing utilities (114% more). However, we want to
ensure that these utilities are not simply correct because
they consist mostly of the original coreutils functions.
This is not the case for Phoenix: the recompiled utili-
ties that passed all tests consisted of 85.4% decompiled
functions on average, which is actually higher than the
overall Phoenix average of 82.2%. The correct Hex-Rays
utilities consisted of 73.8% decompiled functions, which
is less than the overall Hex-Rays average of 77.5%. As
can be seen in Figure 6, this is because Hex-Rays com-
pletely failed on two utilities. The recompiled binaries for
these utilities consisted completely of the original source
code, which (unsurprisingly) passed all tests. Excluding
those two utilities, Hex-Rays only compiled 26 utilities
that passed the tests. These utilities consisted of 79.4%
decompiled functions on average.

We also re-ran Phoenix with the standard structural
analysis schemas, including those that are not semantics-
preserving, in order to evaluate whether semantics-
preservation has an observable effect on correctness. With
these schemas, Phoenix produced only 46 correct utilities.
This 30% reduction in correctness (from 60 down to 46)
illustrates the importance of using semantics-preserving
schemas.

Phoenix HR

Total gotos 40 51

Total gotos (without loop membership) 73 n/a

Total gotos (without refinement) 1,229 n/a

Table 6: Structuredness measurements for the coreutils
experiment. The statistics only reflect the 8,676 recompil-
able functions output by both decompilers.

4.4.3 Structuredness

Finally, we measure the amount of structure recovered by
each decompiler. Our approach here is straightforward:
we count the number of goto statements emitted by each
decompiler. To ensure a fair comparison, we only con-
sider the intersection of recompilable functions emitted
by both decompilers, which consists of 8,676 functions.
Doing otherwise would penalize a decompiler for out-
putting a function with goto statements, even if the other
decompiler could not decompile that function at all.

The overall structuredness results are depicted in Ta-
ble 6, with the results broken down per utility in Figure 7.
In summary, Phoenix recovered the structure of the 8,676
considered functions using only 40 gotos. Furthermore,
Phoenix recovered significantly less structure when either
refinement (1189 more gotos) or the new loop mem-
bership definition (33 more) was disabled. Our results
suggest that structuring algorithms without iterative re-
finement [20, 32, 36] will recover less structure. The
results also suggest that Hex-Rays employs a technique
similar to iterative refinement.

5 Limitations and Future Work

5.1 BAP Failures
Phoenix uses BAP [10] to lift instructions to a simple lan-
guage that is then analyzed. BAP does not have support
for floating point and other exotic types of instructions.
Phoenix will not attempt to decompile any function that
contains instructions which are not handled by BAP. BAP
can also fail for other reasons. It uses value set analy-

Published in the Proceedings of the 2013 Usenix Security Symposium

0

2

4

6

8

Utility

N
um

be
r

of
 G

ot
os

Decompiler

HexRays

Phoenix

Figure 7: The number of gotos emitted by each decompiler, broken down by utility. Only functions that were decompiled
and recompiled by both decompilers are counted.

sis (VSA) to perform CFG recovery, and to help with
other parts of the decompilation process. If VSA or other
mandatory analyses fail, then the decompiler cannot pro-
ceed. These problems can cascade to affect other func-
tions. For instance, if CFG recovery for function g fails
and function f calls g, function f will also fail, because it
is necessary to know the type of g before calling it.

5.2 Correctness Failures
Because Phoenix is designed for program analysis, we
want it to be correct. Our experiments show that, al-
though Phoenix significantly improves over prior work
with respect to correctness, Phoenix’s output is not always
correct. The good news is that we can attribute most cor-
rectness errors in Phoenix to the underlying type recovery
component we used, TIE [28]. Many of the problems,
which we describe below, only became apparent when
TIE was stress-tested by Phoenix.

Iterative Variable Recovery TIE does not always iden-
tify all local variables. For instance, if function f takes
a pointer to an integer, and a function calls f(x), then
TIE infers that x is a subtype of a pointer to an integer.
However, TIE does not automatically infer that *x, the
locations that x can point to, are potentially integer vari-
ables. TIE does not recover such variables because it
would need to iteratively discover variables, generate and
solve type constraints to do so. Unfortunately, undis-
covered variables can cause incorrect decompilation for
Phoenix. For example, if the undiscovered variable is a
struct on the stack, space for the struct is never allocated,
which allows the called function to read and overwrite
other variables on the stack of the callee. This is the lead-
ing cause of correctness errors in Phoenix. In the future,
we plan to investigate running type recovery until the set
of known variables reaches a fix point.

Calling Conventions TIE currently assumes that all
functions use the cdecl calling convention, and does not
support multi-register (64-bit) return values. Unfortu-
nately, this can make Phoenix output incorrect or uncom-
pilable code. In the future, we plan to use an interpro-

cedural liveness analysis to automatically detect calling
conventions based on the behavior of a function and the
functions that call it. Our goal is to detect and understand
calling conventions automatically, even when they are
non-standard. This is important for analyzing malware,
some of which uses unusual calling conventions to try to
confuse static analysis.

Recursive Types TIE has no support for recursive
types, although these are used quite frequently for data
structures like linked lists and binary trees. This means
that the type

struct s {int a; struct s *next;}

will be inferred as

struct s {int a; void* next;}

which does not specify what type of element next points
to. Since Phoenix is intended to be the front-end of an
analysis platform, we would like to recover the most spe-
cific type possible. We plan to investigate more advanced
type inference algorithms that can handle recursive types.

6 Related Work

At a high level, there are three lines of work relevant to
Phoenix. First, work in end-to-end decompilers. Second,
work in control structure recovery, such as loop identifi-
cation and structural analysis. Third, literature pertaining
to type recovery.

Decompilers The earliest work in decompilation dates
back to the 1960’s. For an excellent and thorough review
of the literature in decompilation and several related areas
up to around 2007, see Van Emmerik’s thesis [39, ch. 2].
Another in-depth overview is available online [18].

Modern decompilers typically trace their roots in Ci-
fuentes’ 1994 thesis on dcc [13], a decompiler for 80286
to C. The structuring algorithm used in dcc is based on
interval analysis [2]. Cifuentes proposed the compression
ratio metric (see §4.2), but did not measure correctness
on the ten programs that dcc was tested on [14]. Since

Published in the Proceedings of the 2013 Usenix Security Symposium

compression is the target metric, dcc outputs assembly if
it encounters code that it cannot handle. Cifuentes et al.
have also created a SPARC asm to C decompiler, and
measured compressibility and the number of recovered
control structures on seven SPEC1995 programs [16].
Again, they did not test the correctness of the decompi-
lation output. Cifuentes [13] pioneered the technique of
recovering short-circuit evaluations in compound expres-
sions (e.g., x && (!y || z) in C).

Chang et al. [11] also use compressibility in their work
on cooperating decompilers for the three programs they
tested. Their main purpose was to show they can find
bugs in the decompiled source that were known to exist
in the binary. However, correctness of the decompilation
itself was not verified.

Boomerang is a popular open-source decompiler
started by Van Emmerik as part of his Ph.D. [39]. The
main idea of Van Emmerik’s thesis is that decompilation
analysis is easier on the Single Static Assignment (SSA)
form of a program. In his thesis, Van Emmerik’s experi-
ments are limited to a case study of Boomerang coupled
with manual analysis to reverse engineer a single 670KB
Windows program. We tested Boomerang as part of our
evaluation, but it failed to produce any output on all but a
few of our test cases after running for several hours.

The structuring algorithm used in Boomerang first ap-
peared in Simon [37], who in collaboration with Cifuentes
proposed a new algorithm known as “parenthesis theory”.
Simon’s own experiments showed that parenthesis the-
ory is faster and more space efficient than the interval
analysis-based algorithm in dcc, but recovers less struc-
ture.

Hex-Rays is the de facto industry decompiler. The only
information we have found on Hex-Rays is a 2008 write-
up [23] by Hex-Rays’ author, Guilfanov, who revealed
that Hex-Rays also performs structural analysis. How-
ever, Hex-Rays achieves much better structuredness than
vanilla structural analysis, which suggests that Hex-Rays
is using a heavily modified version. There are many other
binary-to-C decompilers such as REC [35] and DISC [26].
However, our experience suggests that they are not as ad-
vanced as Hex-Rays.

Our focus is on decompiling C binaries. Other re-
searchers have investigated decompiling binaries from
managed languages such as Java [30]. The set of chal-
lenges they face are fundamentally different. On the one
hand, these managed binaries contain extra information
such as types; on the other hand, recovering the control
flow itself in the presence of exceptions and synchroniza-
tion primitives is a difficult problem.

Control Structure Recovery Control structure recov-
ery is also studied in compilation. This is because by the
time compilation is in the optimization stage, the input

program has already been parsed into a low-level interme-
diate representation (IR) in which the high-level control
structure has been destroyed. Much work in program
optimization therefore attempts to recover the control
structures.

The most relevant line of work in this direction is the
elimination methods in data flow analysis (DFA), pio-
neered by Allen [2] and Cooke [17] in the 1970’s and
commonly known as “interval analysis”. Sharir [36] sub-
sequently refined interval analysis into structural analysis.
In Sharir’s own words, structural analysis can be seen as
an “unparser” of the CFG. Besides the potential to speed
up DFA even more when compared to interval analysis,
structural analysis can also cope with irreducible CFGs.

Engel et al. [20] are the first to extend structural analy-
sis to handle C-specific control statements. Specifically,
their Single Entry Single Successor (SESS) analysis adds
a new tail region type, which corresponds to the state-
ments that appear before a break or continue. For
example, suppose if (b) { body; break; } appears
in a loop, then the statements represented by body would
belong to a tail region. Engel et al. have extensively
tested their implementation of SESS in a source-to-source
compiler. However, their SESS analysis does not use
iterative refinement, and can get stuck on unstructured
code. We show in our evaluation that this leads to a large
amount of structure being missed. Their exact algo-
rithm for detecting tail regions is also left unspecified [20,
Algorithm 2, Line 15].

Another line of related work lies in the area of program
schematology, of which “Go To Statement Considered
Harmful” by Dijkstra [19] is the most famous. Besides the
theoretical study of the expressive power of goto vs. high-
level control statements (see, e.g., [34]), this area is also
concerned with the automatic structuring of (unstructured)
programs, such as the algorithm by Baker [3].

Type Recovery Besides control structure recovery, a
high-quality decompiler should also recover the types of
variables. Much work has gone into this recently. Phoenix
uses TIE [28], which recovers types statically. In contrast,
REWARDS [29] and Howard [38] recover types from
dynamic traces. Other work has focused on C++-specific
issues, such as virtual table recovery [21, 22].

7 Conclusion

We presented Phoenix, a new binary-to-C decompiler de-
signed to accurately and effectively recover abstractions.
Phoenix can help leverage the wealth of existing source-
based tools and techniques in security scenarios, where
source code is often unavailable. Phoenix uses a novel
control flow structuring algorithm that avoids a previously

Published in the Proceedings of the 2013 Usenix Security Symposium

unpublished correctness pitfall in decompilers, and uses it-
eratively refinement to recover more control flow structure
than existing algorithms. We evaluated Phoenix and the
de facto industry standard decompiler, Hex-Rays, on cor-
rectness and amount of control flow structure recovered.
Phoenix decompiled twice as many utilities correctly as
Hex-Rays, and recovered more structure.

Acknowledgments

This material is based upon work supported by DARPA
under Contract No. HR00111220009. Any opinions, find-
ings and conclusions or recommendations expressed in
this material are those of the author(s) and do not neces-
sarily reflect the views of DARPA.

References

[1] Alfred Aho, Monica Lam, Ravi Sethi, and Jeffrey
Ullman. Compilers: Principles, Techniques, and
Tools. Addison Wesley, 2nd edition, 2006.

[2] Frances E. Allen. Control Flow Analysis. In Pro-
ceedings of ACM Symposium on Compiler Optimiza-
tion, pages 1–19, 1970.

[3] Brenda S. Baker. An Algorithm for Structuring
Flowgraphs. Journal of the ACM, 24(1):98–120,
1977.

[4] Gogul Balakrishnan. WYSINWYX: What You See Is
Not What You eXecute. PhD thesis, Computer Sci-
ence Department, University of Wisconsin-Madison,
August 2007.

[5] Sebastien Bardin, Philippe Herrmann, and Franck
Vedrine. Refinement-Based CFG Reconstruction
from Unstructured Programs. In Proceedings of
the 12th International Conference on Verification,
Model Checking, and Abstract Interpretation, pages
54–69. Springer, 2011.

[6] Al Bessey, Ken Block, Ben Chelf, Andy Chou,
Bryan Fulton, Seth Hallem, Charles Henri-Gros,
Asya Kamsky, Scott McPeak, and Dawson Engler.
A Few Billion Lines of Code Later. Communica-
tions of the ACM, 53(2):66–75, 2010.

[7] The BitBlaze Binary Analysis Platform. http://
bitblaze.cs.berkeley.edu, 2007.

[8] Erik Bosman, Asia Slowinska, and Herbert Bos.
Minemu: The World’s Fastest Taint Tracker. In
Proceedings of the 14th International Symposium
on Recent Advances in Intrusion Detection, pages
1–20. Springer, 2011.

[9] David Brumley, Tzi-cker Chiueh, Robert Johnson,
Huijia Lin, and Dawn Song. RICH: Automatically
Protecting Against Integer-Based Vulnerabilities. In
Proceedings of the Network and Distributed System
Security Symposium. The Internet Society, 2007.

[10] David Brumley, Ivan Jager, Thanassis Avgerinos,
and Edward J. Schwartz. BAP: A Binary Analysis
Platform. In Proceedings of the 23rd International
Conference on Computer Aided Verification, pages
463–469. Springer, 2011.

[11] Bor-yuh Evan Chang, Matthew Harren, and
George C. Necula. Analysis of Low-Level Code
Using Cooperating Decompilers. In Proceedings of
the 13th International Symposium on Static Analysis,
pages 318–335, 2006.

[12] Walter Chang, Brandon Streiff, and Calvin Lin. Ef-
ficient and Extensible Security Enforcement Using
Dynamic Data Flow Analysis. In Proceedings of the
15th ACM Conference on Computer and Communi-
cations Security, pages 39–50, 2008.

[13] Cristina Cifuentes. Reverse Compilation Techniques.
PhD thesis, Queensland University of Technology,
1994.

[14] Cristina Cifuentes. Interprocedural Data Flow De-
compilation. Journal of Programming Languages,
4(2):77–99, 1996.

[15] Cristina Cifuentes and K. John Gough. Decompi-
lation of Binary Programs. Software: Practice and
Experience, 25(7):811–829, 1995.

[16] Cristina Cifuentes, Doug Simon, and Antoine
Fraboulet. Assembly to High-Level Language Trans-
lation. In Proceedings of the International Con-
ference on Software Maintenance, pages 228–237.
IEEE, 1998.

[17] John Cocke. Global Common Subexpression Elimi-
nation. In Proceedings of the ACM Symposium on
Compiler Optimization, pages 20–24, 1970.

[18] The Decompilation Wiki. http://www.

program-transformation.org/Transform/

DeCompilation. Page checked 6/25/2013.

[19] Edsger W. Dijkstra. Letters to the Editor: Go To
Statement Considered Harmful. Communications of
the ACM, 11(3):147–148, 1968.

[20] Felix Engel, Rainer Leupers, Gerd Ascheid, Max
Ferger, and Marcel Beemster. Enhanced Structural
Analysis for C Code Reconstruction from IR Code.
In Proceedings of the 14th International Workshop

Published in the Proceedings of the 2013 Usenix Security Symposium

http://bitblaze.cs.berkeley.edu
http://bitblaze.cs.berkeley.edu
http://www.program-transformation.org/Transform/DeCompilation
http://www.program-transformation.org/Transform/DeCompilation
http://www.program-transformation.org/Transform/DeCompilation

on Software and Compilers for Embedded Systems,
pages 21–27. ACM, 2011.

[21] Alexander Fokin, Egor Derevenetc, Alexander Cher-
nov, and Katerina Troshina. SmartDec: Approach-
ing C++ Decompilation. In Proceedings of the 18th
Working Conference on Reverse Engineering, pages
347–356. IEEE, 2011.

[22] Alexander Fokin, Katerina Troshina, and Alexander
Chernov. Reconstruction of Class Hierarchies for
Decompilation of C++ Programs. In Proceedings
of the 14th European Conference on Software Main-
tenance and Reengineering, pages 240–243. IEEE,
2010.

[23] Ilfak Guilfanov. Decompilers and Beyond. In Black-
Hat USA, 2008.

[24] Johannes Kinder and Helmut Veith. Jakstab: A
Static Analysis Platform for Binaries. In Proceed-
ings of the 20th International Conference on Com-
puter Aided Verification, pages 423–427. Springer,
2008.

[25] Christopher Kruegel, William Robertson, Fredrik
Valeur, and Giovanni Vigna. Static Disassembly
of Obfuscated Binaries. In Proceedings of the 13th
USENIX Security Symposium, pages 255–270, 2004.

[26] Satish Kumar. DISC: Decompiler for Tur-
boC. http://www.debugmode.com/dcompile/

disc.htm. Page checked 6/25/2013.

[27] David Larochelle and David Evans. Statically De-
tecting Likely Buffer Overflow Vulnerabilities. In
Proceedings of the 10th USENIX Security Sympo-
sium, pages 177–190, 2001.

[28] JongHyup Lee, Thanassis Avgerinos, and David
Brumley. TIE: Principled Reverse Engineering of
Types in Binary Programs. In Proceedings of the
Network and Distributed System Security Sympo-
sium. The Internet Society, 2011.

[29] Zhiqiang Lin, Xiangyu Zhang, and Dongyan Xu.
Automatic Reverse Engineering of Data Structures
from Binary Execution. In Proceedings of the Net-
work and Distributed System Security Symposium.
The Internet Society, 2010.

[30] Jerome Miecznikowski and Laurie Hendren. Decom-
piling Java Bytecode: Problems, Traps and Pitfalls.
In Proceedings of the 11th International Conference
on Compiler Construction, pages 111–127. Springer,
2002.

[31] Robin Milner, Mads Tofte, Robert Harper, and
David MacQueen. The Definition of Standard ML
(Revised). The MIT Press, 1997.

[32] Steven Muchnick. Advanced Compiler Design and
Implementation. Morgan Kaufmann, 1997.

[33] George C. Necula, Scott McPeak, Shree P. Rahul,
and Westley Weimer. CIL: Intermediate Language
and Tools for Analysis and Transformation of C
Programs. In Proceedings of the 11th International
Conference on Compiler Construction, pages 213–
228. Springer, 2002.

[34] W. W. Peterson, T. Kasami, and N. Tokura. On the
Capabilities of While, Repeat, and Exit Statements.
Communications of the ACM, 16(8):503–512, 1973.

[35] REC Studio 4—Reverse Engineering Compiler.
http://www.backerstreet.com/rec/rec.

htm. Page checked 6/25/2013.

[36] Micha Sharir. Structural Analysis: A New Approach
to Flow Analysis in Optimizing Compilers. Com-
puter Languages, 5(3-4):141–153, 1980.

[37] Doug Simon. Structuring Assembly Programs. Hon-
ours thesis, University of Queensland, 1997.

[38] Asia Slowinska, Traian Stancescu, and Herbert Bos.
Howard: A Dynamic Excavator for Reverse Engi-
neering Data Structures. In Proceedings of the Net-
work and Distributed System Security Symposium.
The Internet Society, 2011.

[39] Michael James Van Emmerik. Static Single Assign-
ment for Decompilation. PhD thesis, University of
Queensland, 2007.

[40] Xi Wang, Haogang Chen, Zhihao Jia, Nickolai Zel-
dovich, and M. Frans Kaashoek. Improving Integer
Security for Systems with KINT. In Proceedings of
the 10th USENIX Symposium on Operating Systems
Design and Implementation, pages 163–177, 2012.

Published in the Proceedings of the 2013 Usenix Security Symposium

http://www.debugmode.com/dcompile/disc.htm
http://www.debugmode.com/dcompile/disc.htm
http://www.backerstreet.com/rec/rec.htm
http://www.backerstreet.com/rec/rec.htm

	Introduction
	The Phoenix Structural Analysis Algorithm

	Overview
	Background
	System Overview
	Stages I and II—Existing Work
	Stage III—Control-Flow Structure Recovery
	Stage IV—Statement Translation and Outputting C

	Semantics-Preserving Structural Analysis and Iterative Control-Flow Structuring
	Algorithm Overview
	Acyclic Regions
	Tail Regions and Edge Virtualization
	Switch Refinement
	Cyclic Regions
	Loop Refinement
	Last Resort Refinement

	Evaluation
	Phoenix Implementation
	Metrics
	Coreutils Experiment Overview
	Coreutils Experiment Details
	Setup
	Correctness
	Structuredness

	Limitations and Future Work
	BAP Failures
	Correctness Failures

	Related Work
	Conclusion

