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Abstract. Counterexamples — execution traces of the system that il-
lustrate how an error state can be reached from the initial state — are
essential for understanding verification failures. They are one of the most
salient features of Model Checkers, which distinguish them from Abstract
Interpretation and other Static Analysis techniques by providing a user
with information on how to debug their system and/or the specification.
While in Hardware and Protocol verification, the counterexamples can
be replayed in the system, in Software Model Checking (SMC) coun-
terexamples take the form of a textual or semi-structured report. This
is problematic since it complicates the debugging process by preventing
developers from using existing processes and tools such as debuggers,
fault localization, and fault minimization.
In this paper, we argue that for SMC the most useful form of a coun-
terexample is an executable mock environment that can be linked with
the code under analysis (CUA) to produce an executable that exhibits
the fault witnessed by the counterexample. A mock environment is dif-
ferent from a unit test since it can interface with the CUA at the function
level, potentially allowing it to bypass complex logic that interprets pro-
gram inputs. This makes mock environments easier to construct than unit
tests. In this paper, we describe the automatic environment generation
process that we have developed in the SeaHorn verification framework.
We identify key challenges for generating mock environments from SMC
counterexamples of complex memory manipulating programs that use
many external libraries and function calls. We validate our prototype
on the verification benchmarks from Linux Device Drivers in SV-COMP.
Finally, we discuss open challenges and suggests avenues for future work.

1 Introduction

Software testing is the most widely used technique for assuring quality of a
software system. Automated testing tools, such as fuzzers, generate a test input
(or a test-case), which are concrete values for program inputs that are fed to the
?
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Code Under Analysis (CUA). If the execution raises an exception, crashes, or
produces unexpected output, then that test-case triggers a bug. Developers are
familiar with such test-cases and can use them to help understand the nature of
the bug and develop a fix.

Although testing can be very effective at finding bugs, it cannot uncover
all bugs because exhaustively enumerating all program inputs is not possible.
A complementary approach to testing is Software Model Checking (SMC) 1.
SMC has several advantages over testing. First, it can (symbolically) explore all
program executions, and as a result, it can prove the absence of bugs in addition
to finding them. Unlike some forms of testing (e.g., mutational fuzzing), SMC is
completely automated and does not require user-provided test-cases or inputs.

One of the most important features of SMC (and Model Checking in gen-
eral) is its ability to produce a counterexample when the property of interest
is violated. A counterexample is a trace through the system that shows how
the system reaches an error state from the initial state. The current state-of-
the-art is for SMC tools to generate counterexamples as a machine readable
document describing a set of assignments of variables to their corresponding val-
ues, or traces through an abstract transition system. For example, the SLAM
verification project uses a special text format and a special visualizer for its
counterexamples, and the Linux Driver Verification project uses an XML-based
format indicating the line numbers and function calls that were executed. Most
recently, the Software Verification Competition (SV-COMP) has adopted an
XML-based format for its counterexamples.

These counterexample formats are often enhanced by a variety of visualizers
to illustrate the relationship between a counterexample and a program. Most
commonly, a visualizer simulates a debug session, by showing a counterexample
as an execution over the program text. A recent study [25] has argued that a
textual report from an analysis tool does not fit well into the usual development
cycle, and that this is one of the leading reasons why developers do not adopt
static program analysis tools.

In this paper, we argue that the most useful representation of a counterex-
ample that a SMC can output for the developer is an executable mock environ-
ment. An executable mock environment E is a code module that implements the
external environment used by the CUA C such that linking C and E together
produces an executable that triggers the buggy execution witnessed by the coun-
terexample. In other words, a mock environment lifts the counterexample into
an executable code.

As an example, we show in Fig. 1 a simplified C snippet from the Linux Driver
Verification Project (LDV) [26] and a conceptual C implementation of a mock
environment. LDV programs are Linux kernel modules annotated with assertions
that check for proper API usage (e.g., every lock is eventually unlocked and no
lock is taken twice in a row). The C snippet shown on the left of Fig. 1 allocates

1 Some authors make the distinction between static and dynamic SMC. The former
analyzes statically all possible program executions while the latter is an adaptation
for testing. Unless otherwise stated, we always refer to static SMC.



1 extern int __VERIFIER_nondet_int(void);
2 extern int __VERIFIER_error(void);
3 extern void* ldv_ptr(void);
4
5 int main(int argc, char* argv[]) {
6 void *p = ldv_ptr();
7
8 if (p > (long) 2012) {
9 if (__VERIFIER_nondet_int() > 456) {

10 ...
11 __VERIFIER_error();
12 }
13 }
14 return 0;
15 }

1 void* ldv_ptr(void) {
2 static int ctr = 0;
3 switch (ctr++) {
4 case 0: return 2013;
5 default: abort();
6 }
7 }
8
9 int __VERIFIER_nondet_int(void) {

10 static int ctr = 0;
11 switch (ctr++) {
12 case 0: return 457;
13 default: abort();
14 }
15 }

Fig. 1: C snippet (left) and an example of a mock environment implementation (right)

external memory by calling ldv_ptr, a special LDV function that represents a
memory interaction between the device driver and the kernel. To represent an
error during this interaction, ldv_ptr can return a pointer value greater than
a predefined absolute address2. The mock environment on the right of Fig. 1
triggers the error function (__VERIFIER_error) by returning an invalid pointer
(2013) from ldv_ptr and yielding 457 when __VERIFIER_nondet_int is called.

Mock environments are natural to software developers. They are analogous
to traditional test doubles, such as mock objects3, which are often used to sim-
ulate complex behaviors or external services in testing. Mock objects tend to be
limited in their implementation; they must be manually configured, and perhaps
involve recompilation or specific program design strategies to achieve desired
behaviors. Furthermore, the mocks themselves become additional dependencies
that must be maintained with test-cases. Conversely, mock environments are
automatically generated from counterexamples and capture all the conditions
necessary to replay error traces through the CUA. Developers need not worry
about configuration or environmental dependencies; they can simply run the
executable counterexample using their traditional tools such as a debugger.

The main challenge in generating mocks is to synthesize an environment that
is sufficient to trigger a bug in the CUA while being a realistic enough represen-
tation of the real environment to be of interest to the developer. In principle,
mock generation can be reduced to symbolic execution, which would guarantee
that the mock is consistent with the operational semantics of the program. Un-
fortunately, in practice, state-of-the-art symbolic execution engines do not scale
to this task. Existing symbolic execution engines are good at exploring many
shallow executions, or opportunistically finding bugs at an end of a long con-
crete execution. None are good at finding a targeted non-trivial execution that
satisfies some constraints found by an SMC [6].

In summary, we make the following contributions: (1) formally define a con-
crete semantics for executable counterexamples, (2) describe a general framework
2 The constant 2012 is added by the LDV team as part of kernel modeling.
3 http://www.mockobjects.com/2009/09/brief-history-of-mock-objects.
html

http://www.mockobjects.com/2009/09/brief-history-of-mock-objects.html
http://www.mockobjects.com/2009/09/brief-history-of-mock-objects.html


a ::= n | vi | a1 opa an
p ::= null | vp + a
b ::= true | false | not b | b1 opb b2 | a1 opr a2 | p1 opp p2
S ::= skip | error | S1; S2 | if b then S1 else S2 | while b do S end

vp := alloc (sz) | vi := load (p) | vp := load (vp′)
store (vp, vp′) | store (vi, vp′) | vi := a | vp := p

Fig. 2: A simple imperative language

for building executable counterexamples, (3) describe an instance of the frame-
work as implemented in SeaHorn [22], a state of the art software analysis tool,
and (4) present a preliminary experimental evaluation of our framework imple-
mentation in SeaHorn by benchmarking it on the Linux Driver Verification set
of benchmarks from SV-COMP.

2 Concrete Semantics for Executable Counterexamples

In this section, we formally define what we mean by a counterexample and a
mock environment. To do so, we first define a simple imperative language that
has an explicit error state and a corresponding concrete semantics. We then show
how this language can be extended to represent external functions and memory
allocations.

2.1 A Simple Imperative Language

To simplify the presentation, we first define a simple language restricted to in-
tegers and pointers and without function calls. The syntax is described in Fig-
ure 2. The set of program variables is V = VP ∪ VI , where VP and VI are the
set of pointer and integer variables, respectively. We assume that the integer
and pointer variables are disjoint, VP ∩ VI = ∅. Integer and pointer variables
are denoted with symbols vi ∈ VI and vp ∈ VP , respectively. The symbol v ∈ V
denotes a variable of either integer or pointer type. Boolean and arithmetic ex-
pressions are described by b ∈ BExp and a ∈ AExp, respectively. We assume
they are equipped with the standard boolean (opb) and arithmetic (opa) opera-
tors. Similarly, we define pointer expressions p ∈ PExp, which are equipped with
pointer equality and inequality operators (opp).

We assume a classical structural operational semantics with a standard mem-
ory model for C programs. A pointer is a pair 〈Loc,Offset〉, where Loc is a unique
identifier of a memory object of size Sz(Loc) and Offset is the byte offset in Loc,
where 0 ≤ Offset < Sz(Loc). The number of possible memory objects is infinite.
The special constant null is denoted by the pointer (0, 0). We assume a function
Sz : Loc 7→ N that maps each memory object to its size.



〈_, ei, ep, h, ω〉 ⇒ 〈ei, ep, h, ω〉 if ω = true
〈error, ei, ep, h, ω〉 ⇒ 〈ei, ep, h, true〉

〈vp := alloc(sz), ei, ep, h, ω〉 ⇒
〈ei, ep[vp 7→ c], h[c ≡ 〈Loc, 0〉 7→ ε], ω〉

if ω = false and
Loc 6∈ Dom(h) and
Sz[Loc 7→ sz]

〈store(vp, v′p), ei, ep, h, ω〉 ⇒ 〈ei, ep, h[ep(vp′) 7→ h(ep(vp))], ω〉 if ω = false

〈store(vi, v′p), ei, ep, h, ω〉 ⇒ 〈ei, ep, h[ep(vp′) 7→ ei(vi)], ω〉 if ω = false

〈vp := load(v′p), ei, ep, h, ω〉 ⇒ 〈ei, ep[vp 7→ h(v′p)], h, ω〉 if ω = false

〈vi := load(vp), ei, ep, h, ω〉 ⇒ 〈ei[vi 7→ h(vp)], ep, h, ω〉 if ω = false
〈vp := p, ei, ep, h, ω〉 ⇒ 〈ei, ep[vp 7→ P[[p]](ei, ep)], h, ω〉 if ω = false
〈vi := a, ei, ep, h, ω〉 ⇒ 〈ei[vi 7→ A[[a]](ei)], ep, h, ω〉 if ω = false
〈skip, ei, ep, h, ω〉 ⇒ 〈ei, ep, h, ω〉
〈S1, ei, ep, h, ω〉 ⇒ 〈e′i, e′p, h′, ω′〉

〈S1;S2, ei, ep, h, ω〉 ⇒ 〈S2, e
′
i, e

′
p, h

′, ω′〉
〈S1, ei, ep, h, ω〉 ⇒ 〈S′

1, e
′
i, e

′
p, h

′, ω′〉
〈S1;S2, ei, ep, h, ω〉 ⇒ 〈S′

1;S2, e
′
i, e

′
p, h

′, ω′〉
〈if b then S1 else S2, ei, ep, h, ω〉 ⇒ 〈S1, ei, ep, h, ω〉 if B[[b]](ei, ep) = true
〈if b then S1 else S2, ei, ep, h, ω〉 ⇒ 〈S2, ei, ep, h, ω〉 if B[[b]](ei, ep) = false
〈while b do S end, ei, ep, h, ω〉 ⇒ if B[[b]](ei, ep) = true
〈S;while b do S end, ei, ep, h, ω〉
〈while b do S end, ei, ep, h, ω〉 ⇒ 〈ei, ep, h, ω〉 if B[[b]](ei, ep) = false

Fig. 3: Operational semantics for language described in Figure 2

To define a program state, we need environments that map both program
variables and pointers to values, and a store that represents memory contents:

ei ∈ EnvI = VI 7→ Z ep ∈ EnvP = VP 7→ 〈Loc,Offset〉
h ∈ Store = 〈Loc,Offset〉 7→ 〈Loc,Offset〉 ∪ Z ∪ ε

An integer environment ei ∈ EnvI maps integer variables to integer values. A
pointer environment ep ∈ EnvP maps pointer variables to pointers. A store h ∈
Store is a mapping from pointers to either pointers or integer values. The symbol
ε denotes that the pointer points to uninitialized memory. We use functions P, B,
and A to express the semantics of pointer, boolean and arithmetic expressions:

P : PExp→ (EnvI × EnvP)→ 〈Loc,Offset〉
B : BExp→ (EnvI × EnvP)→ B
A : AExp→ EnvI → Z

The semantics of boolean and arithmetic expressions is standard and the details
are omitted for brevity. However, we describe here the semantics for pointers:

P[[p]](ei, ep) =
{
(0, 0) if p ≡ null or (0, 0) = ep(p)
(Loc, o+ A[[a]]ei) if p ≡ vp + a and (Loc, o) = ep(vp)



The structural operational semantics for our language is given in Figure 3. A
configuration 〈S, ei, ep, h, ω〉 consists of a statement S, an integer environment
ei, a pointer environment ep, a store h and a flag ω that indicates whether
error has been executed. Given two configurations c1 and c2, the notation
c1 ⇒ c2 means that c2 is reachable from c1 in one execution step according to the
semantics. ⇒∗ is the transitive closure of the ⇒ relation. Our semantics tracks
whether error is reached and sets ω to true if that is the case. The statement
p := alloc(sz) allocates a fresh memory object of size sz and returns a pointer
to it. The statement vp := p performs pointer arithmetic but does not read
from memory. The statements vp := load(vp′), vi := load(vp), store(vi, vp′),
and store(vp, vp′) read and write memory. We assume that memory operations
abort execution when the pointer operand cannot be resolved to a legal offset of
an allocated memory object. For simplicity, we do not keep track of such runtime
error states in our semantics. The rest is standard so we omit the details.

2.2 Extending with External Functions and Memory

One key feature of SMC is that the environment of the CUA does not need to
fully defined. For example, external functions, which are called by the CUA but
whose implementations are not in the CUA, and memory regions allocated by
external functions are both permitted by SMC. This is vital, for instance, when
model checking of Linux device drivers, as the whole system is not available.
However, partially defined programs cannot be represented by the operational
semantics presented so far. To represent external functions and memory regions,
we first extend our syntax with a new statement:

v := extern_alloc(v1, . . . , vn)

where the variables v, v1, . . . , vn can be either integers or pointers. Note that with
some syntactic sugar this statement is enough to model both external function
calls with parameters v1, . . . , vn and externally allocated memory.

We then extend our definition of a configuration as follows. In addition to
〈S, ei, ep, h, ω〉, we need a global counter λ ∈ N used for a time-stamp. The
counter is needed to distinguish external memory allocations across loop it-
erations. We also define two external environments eexti , eextp for integers and
pointers whose values and memory are allocated externally, respectively:

eexti ∈ ExternalEnvI = N× VP × EnvI × EnvP × Store 7→ Z
eextp ∈ ExternalEnvP = N× VP × EnvI × EnvP × Store 7→ (Loc,Offset)

The environment eexti (eextp ) is a mapping from a tuple consisting of: a time-
stamp, a vector of program variables representing the arguments to the function,
and the standard environments (i.e., integer and pointer environments and the
store). We are now ready to define the semantics of our new statement:



〈v := extern_alloc(v1, . . . , vn), ei, ep, h, ω, λ, eexti , eextp 〉 =
〈ei[v 7→ n], ep, h, ω, λ+ 1, eexti , eextp 〉 if v ∈ VI and

n = eexti (λ, v1, . . . , vn, ei, ep, h)
〈ei, ep[v 7→ c], h[c ≡ 〈Loc,O〉 7→ ε],
ω, λ+ 1, eexti , eextp 〉 if v ∈ VP and

〈Loc,O〉 = eextp (λ, v1, . . . , vn, ei, ep, h)

2.3 Counterexamples and Mock Environments

We can now formally define both counterexamples and mock environments:

Definition 1 (Counterexample and Mock Environment). Given a pro-
gram Sentry, a counterexample is defined as

〈Sentry, ∅, ∅, ∅, false, 0, eexti , eextp 〉 ⇒∗ 〈ei, ep, h, true, λ, eexti , eextp 〉.

and a mock environment E is defined as the pair of external environments,
〈eexti , eextp 〉.

The rest of this paper describes how to synthesize the external environments
eexti and eextp from a SMC counterexample and how to combine it with the CUA
in order to exercise the error location.

3 A Framework for Constructing Executable
Counterexamples

In this section, we present our framework for generating mocks from counterex-
amples produced by a Software Model-Checker (SMC), and the process of gen-
erating an executable that links the code under analysis (CUA) (which may be
partially defined) with the mock to form a fully defined executable. The frame-
work is illustrated in Figure 4. Rectangular boxes denote the main components,
and the labeled arrows between these components denote the inputs and outputs
of these components.

The main components of the framework are: (a) a Software Model Checker,
(b) Directed Symbolic Execution, (c) a Mock Environment Builder, and (d) an
External Memory Virtualization. The input to the framework is the Code Under
Analysis (CUA), which contains an embedded safety property. An output, if
possible, is a fully-defined executable that takes no inputs and references no
external functions, and that violates the safety property when it is executed.
We summarize each component and corresponding assumptions in the rest of
this section. An instance of this framework using the Software Model Checker
SeaHorn is presented in Section 4.

Software Model Checker. In the first step, an SMC is used to identify a potential
buggy behavior of the CUA. We assume that the SMC finds a counterexample,
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since otherwise nothing needs to be generated. We make minimal assumptions
about SMC. First, we assume that the safety property is already combined with
the CUA. This, for example, can be done via a common convention of reducing
safety verification to checking reachability of a designated error function, such
as the __VERIFIER_error function used by SV-COMP. Second, we assume that
the SMC can produce a trace indicating the loops executed by the counterexam-
ple and their corresponding number of iterations. However, we do not require the
SMC to produce a detailed trace. This is necessary to allow the SMC to use sim-
plification and optimization techniques during verification, some of which might
make it difficult to extract a detailed trace after the analysis. Third, we do not
require the SMC to be sound with respect to the C operational semantics. This
is a necessary assumption because most current SMC techniques sacrifice sound-
ness for scalability. Common soundness issues are related to undefined behavior,
bit-precise semantics of integer operations, or memory modeling. Although we
do not make any assumption about the SMC’s soundness, we hope that the
SMC is sound with respect to some useful subset of the language’s operational
semantics.

Directed Symbolic Execution (DirSE). In this step, a counterexample produced
by SMC is analyzed by Directed Symbolic Execution. The main purpose of DirSE
is to reproduce the counterexample found by the SMC and produce a more
precise counterexample with respect to the concrete semantics. First, DirSE
produces a Control Flow Graph (CFG) of the program which is sliced with
respect to the counterexample trace. A key observation is that the sliced CFG is
acyclic since each loop is unrolled using the information from the trace. Recall
that the SMC must produce counterexamples given as traces indicating the
number of times loops are executed. However, since we do not require the SMC to
produce a detailed trace, the sliced CFG can still contain a large number of paths.
Next, DirSE tries to prove that __VERIFIER_error is still reachable. This search
process can be quite challenging because of the need for bit-precise semantics
of integer operations, potential undefined behavior, and the presence of external
memory allocation and functions which are not defined in the CUA. A successful
output of DirSE is a counterexample generated by a SMT solver using bit-level



precision. If a counterexample cannot be obtained because DirSE determines
that no buggy execution exists in the sliced CFG, the SMC’s counterexample is
deemed unsound and the counterexample generation process is aborted.

Mock Environment Builder (MB). This component takes the detailed trace pro-
duced by DirSE and produces a mock environment in the form of object code.
Essentially, it “internalizes” all external functions by creating mocks for them.
Thus, the main task for the mock builder is to produce all values and mem-
ory addresses for all the memory that is allocated outside of the CUA. This is
quite challenging. While the addresses for return values can be extracted from
the counterexample, the mock builder is not aware whether an external call is
allocating memory or what happens to a pointer that is passed as a parameter.

External Memory Virtualization (EMV). The last component of the framework
takes the executable binary produced by linking the CUA and the mock together,
and ensures that, when executed, it violates the safety property. The main chal-
lenge is to ensure that all memory addresses generated by the MB are valid so
that each memory access can be resolved to a legal offset of an allocated mem-
ory object, while at the same time the complete execution triggers a property
violation. In our framework, the MB does not allocate memory and therefore, it
cannot map the (abstract) memory addresses generated by DirSE to valid (i.e.,
allocated) memory. This is the main task of the EMV which translates between
the two types of addresses. The EMV provides a virtual external memory to
the executable, ensuring that no memory access ever triggers a program failure
during the execution. More precisely, the EMV traps each memory access of the
program, and, whenever the access appears to reference an unallocated memory
region, it either redirects the access to a special memory region, or, simulates a
valid memory access by providing a default value back to the program. Having
multiple choices in how to map unallocated memory regions to valid ones is the
reason why MB is decoupled from EMV.

Finally, we believe that our framework is general enough so that almost any
verification tool can be plugged in. However, this does not mean that all tools
can clearly benefit from all our components or the framework itself. For instance,
Bounded Model Checking (BMC) can usually produce bit-precise counterexam-
ples, and as a result would not benefit from DirSE. Some Test Case Genera-
tion (TCG) tools (see Section 6) model the concrete semantics of the program
and allocate memory on-the-fly. Thus, they might not benefit from our frame-
work at all. The main advantage of our framework is, however, that it separates
the problem of model-checking a program from the generation of an executable
counterexample. This is vital for scalability since it allows the SMC to perform
abstractions which would be difficult, if not impossible, to apply on BMC and
TCG tools.



DirSE(cfg, cex)
1 Build a sliced acyclic cfg based on the cex
2 Let φ be the verification conditions of cfg
3 Let φalloc be the encoding of memory allocation constraints
4 if φ ∧ φalloc is UNSAT (or timeout) then
5 print “no concrete CEX found”
6 return ∅
7 else
8 return model M of φ ∧ φalloc

Fig. 5: DirSE in SeaHorn implemented as a BMC problem

4 Executable Counterexample Generation in SeaHorn

In this section, we present an instance of our framework using SeaHorn [22],
a publicly available Software Model Checker. We organize the section following
the same structure as Section 3 describing the implementation details of each
of the four main components of the framework: Software Model Checker, Di-
rected Symbolic Execution, Mock Environment Builder, and External Memory
Virtualization.

The SeaHorn Software Model Checker. SeaHorn is a SMC for C/C++ pro-
grams based on the LLVM framework. It uses clang to compile programs to the
LLVM intermediate representation, applies many of the LLVM optimizations to
pre-process the code before analysis, and then uses a custom analysis engine
based on Abstract Interpretation and Constrained Horn Clauses for verification.
SeaHorn is sound with respect to its specialized semantics of C. In particu-
lar, it assumes that all integers are of arbitrary precision (i.e., unbounded or
mathematical), and assumes a C-like memory model [23]. Furthermore, because
SeaHorn relies on multiple LLVM components, which aggressively optimize
undefined computations, the presence of undefined behavior (e.g., signed integer
overflow, out-of-bound array access, and reads from uninitialized memory) in a
program may significantly affect its interpretation.

Directed Symbolic Execution in SeaHorn. A high-level description for DirSE
implemented in SeaHorn is shown in Fig. 5. The input to DirSE is a counterex-
ample CEX produced by SeaHorn. The counterexample CEX only indicates
which loop heads must be executed and for how many iterations, and represents
many potential execution paths. From CEX, DirSE first constructs a sliced
acyclic CFG that contains all executions witnessed by CEX (line 1). Symbolic
execution over the CFG is reduced to a Bounded Model Checking (BMC) prob-
lem. The verification condition of the CFG is encoded into a SMT formula φ,
and the satisfiability of φ is checked by an SMT solver. The BMC is specialized
for handling dynamically allocated memory. We use points-to analysis [23] to
partition the memory used by the CFG into disjoint regions, represented by a
points-to graph GMem. Next, all behaviors of the CFG are encoded into verifi-
cation conditions φ using bit-precise semantics of all of the LLVM instructions
(line 2). In the formula φ, we represent each memory region in GMem by an



MockEnvironmentBuilder(cex, model)
1 let m be a map String × (τ1 × . . .× τk → τret)→ V ec(int)
2 foreach s ∈ cex
3 if s is external callsite v := f(v) then
4 key = (nameof(f), typeof(f))
5 m[key] := add(m[key],model(v))
6 endfor
7 foreach ((f, T ),Vals) ∈ m
8 EmitCode(f, T,Vals)
9 endfor

EmitCode(f, τ1 × . . .× τk → τret,Vals)
10 add global counter for λf initially to 0
11 add function declaration for f with type τ1 × . . .× τk → τret
12 add function body:
13 if (λf == 0) then Vals[0]
14 else if (λf == 1) then Vals[1]
15 . . .
16 else Vals[len(Vals)− 1]
17 λf := λf + 1

Fig. 6: High-level description of the Mock Environment Builder in SeaHorn

array, and each memory access is mapped to an array select or store operation
respectively, by associating a pointer to its corresponding memory region. Fi-
nally, extra constraints φalloc are generated to map regions to memory addresses
(line 3) which are consistent with the C memory model. These constraints ensure,
for instance, that allocated pointers are not NULL, that they are disjoint, and
that no two allocated segments intersect. More precise modeling of memory allo-
cation is possible (e.g., all memory addresses are 4-byte or 8-byte aligned) but at
the expense of increasing the solving time. Finally, an SMT solver checks for sat-
isfiability of φ∧φalloc. If the solver returns UNSAT (or times out) the process is
aborted. Otherwise, the model corresponding to the concrete counterexample is
returned. The model is extended to contain meta-data information so that each
variable in the model can be mapped back to its corresponding LLVM variable.

Mock Environment Builder in SeaHorn. A description of the MB is shown in
Fig. 6. The MB produces an LLVM bitcode file that provides definitions for
all of the external functions in the CUA. The MB proceeds in two phases. In
the first phase (lines 2–6), the MB walks the concrete counterexample produced
by DirSE and collects all external calls of the form v := f(v). It then uses the
model M from DirSE to find and record the return value v of the call-site. This
represents the only possible side-effect since we assume external functions do
not modify global state or any of their arguments. In the second phase (lines 7–
9), the MB emits LLVM bitcode (function EmitCode) defining each external
function. For each external function f , it constructs a body Bf that tracks the
number of times it is called and returns an appropriate value based on the order



1 @lambda_1 = private global i32 0
2 @lambda_2 = private global i32 0
3 @int_vals = private constant [1 x i32] [i32 457]
4 @ptr_vals = private constant [1 x i8*] [i8* inttoptr (i32 2013 to i8*)] ;
5
6 define i32 @__VERIFIER_nondet_int() {
7 entry:
8 %0 = load i32, i32* @lambda_1
9 %1 = add i32 %0, 1

10 store i32 %1, i32* @lambda_1
11 %2 = i32* getelementptr inbounds ([1 x i32], [1 x i32]* @int_vals, i32 0, i32 0)
12 %3 = call i32 @__seahorn_get_value_i32(i32 %0, i32* %2, i32 1)
13 ret i32 %3
14 }
15
16 define i8* @ldv_ptr() {
17 entry:
18 %0 = load i32, i32* @lambda_2
19 %1 = add i32 %0, 1
20 store i32 %1, i32* @lambda_2
21 %2 = i8* bitcast ([1 x i8*]* @ptr_vals to i8*)
22 %3 = call i8* @__seahorn_get_value_ptr(i32 %0, i8* %2, i32 1)
23 ret i8* %3
24 }
25
26 declare i32 @__seahorn_get_value_i32(i32, i32*, i32)
27 declare i8* @__seahorn_get_value_ptr(i32, i8*, i32)

Fig. 7: Example of mock environment in LLVM bitcode corresponding to the C program
in Fig. 1

of the call. That is, in the first call to f , Bf returns the first value that f returned
in the counterexample, in the second call it returns the second value, etc.

As an example, Fig. 7 shows the mocks (in LLVM bitcode) that MB gen-
erated for the Linux Driver Verification (LDV) program introduced earlier in
Fig. 1. Lines 6–14 and 16–24 provide definitions for the two external func-
tions in that code: __VERIFIER_nondet_int and ldv_ptr, respectively. Lines
1–4 define the global variables used by the two functions. Since the code of
the two functions follows exactly the same structure, we focus on the defini-
tion of ldv_ptr. The function is assigned its own global counter, lambda_2,
to track the number of calls. Lines 18–20 increment the counter each time
the function is called. The function is also assigned a global array ptr_vals
containing the values that will be returned by each call to ldv_ptr; these
values are extracted from the concrete counterexample. (This array is called
Vals in EmitCode in Fig. 6.) Finally, a call to our run-time library func-
tion __seahorn_get_value_ptr is used to retrieve an appropriate value from
ptr_vals using the current value of lambda_2. We postpone the definitions of
the two external functions, __seahorn_get_value_i32 and __seahorn_get_-
value_ptr, until we describe our next component.

External Memory Virtualization in SeaHorn. The EMV instruments the CUA
with memory load and store hooks that control access to memory. This is
achieved by replacing each load or store instruction in the CUA with a function
call to the special functions __seahorn_mem_load and __seahorn_mem_store,
respectively. Note that it is sufficient to instrument only instructions whose cor-



1 const int MEM_REGION_SIZE_GUESS = 4196;
2 const int TYPE_GUESS = sizeof(int);
3 std::map<intptr_t, intptr_t, std::greater<intptr_t>>
4 absptrmap;
5
6 void __VERIFIER_error() {
7 printf("[sea]␣__VERIFIER_error␣was␣executed\n");
8 exit(1);
9 }

10
11 int32_t __seahorn_get_value_i32(int ctr, intptr_t *g_arr, int g_arr_sz) {
12 if (ctr >= g_arr_sz)
13 return 0;
14 else
15 return g_arr[ctr];
16 }
17
18 intptr_t __seahorn_get_value_ptr(int ctr, intptr_t *g_arr, int g_arr_sz) {
19 if (ctr >= g_arr_sz) return 0;
20 intptr_t absptr = g_arr[ctr];
21 size_t sz = MEM_REGION_SIZE_GUESS * TYPE_GUESS;
22 absptrmap[absptr] = absptr + sz;
23 return absptr;
24 }
25
26 bool is_external_address (void *addr) {
27 intptr_t ip = intptr_t (addr);
28 auto it = absptrmap.lower_bound (ip+1);
29 if (it == absptrmap.end()) return false;
30 intptr_t lb = it->first;
31 intptr_t ub = it->second;
32 return (ip >= lb && ip < ub);
33 }
34
35 bool is_valid_address (void *addr) {
36 return !is_external_address (addr);
37 }
38
39 void __seahorn_mem_load (void *dst, void *src, size_t sz) {
40 if (is_valid_address (src)) {
41 memcpy (dst, src, sz);
42 } else {
43 // ignore read from an illegal memory address
44 bzero(dst, sz);
45 }
46 }
47
48 void __seahorn_mem_store (void *src, void *dst, size_t sz) {
49 if (is_valid_address (dst)) {
50 memcpy (dst, src, sz);
51 } else { // ignore write to illegal memory address
52 }
53 }

Fig. 8: External Virtualization implemented in SeaHorn

responding memory object might alias with an external object. The goal of these
hooks is to map external “virtual” memory to real memory. This is vital because
if a pointer that is externally allocated (e.g., p at line 6 on the left of Fig. 1) does
not refer to a real memory address, the executable counterexample will probably
crash when the pointer is dereferenced.

We have implemented EMV as an LLVM pass that replaces every load and
store instructions with calls to the corresponding functions in our run-time li-



brary. A simplified version of the source code of these functions is shown in Fig. 8.
We also present the implementation of the functions __seahorn_get_value_i32
and __seahorn_get_value_ptr discussed earlier. These functions check for a
given value in a given global array and return it to the caller. The case of __sea-
horn_get_value_ptr is a bit more involved. Whenever a pointer to an external
memory object is returned, we need to guess the size of the corresponding allo-
cated object. Unfortunately, it is not possible in general. Instead, we guess the
size based on the type. We assume that all addresses within the guessed regions
are externally allocated.

The definition of __seahorn_mem_load and __seahorn_mem_store are shown
on the right of Fig. 8. These functions decide whether a pointer being derefer-
enced is allocated by the CUA or not (is_valid_address). For this, we use the
map absptrmap. If the dereferenced pointer is within the bounds of any of the
memory objects externally allocated then the address is considered invalid, oth-
erwise it is considered to be allocated by the CUA, and, therefore, valid. If the
pointer is valid then both __seahorn_mem_load and __seahorn_mem_store
implement the original semantics of load and store. Otherwise, a load returns
a pointer pointing to a region with all its contents written by zeroes and store
is ignored. Note that although simple, this solution is sufficient for many of our
benchmarks.

5 Experimental Evaluation

In this section, we report on the evaluation of our framework as implemented
in SeaHorn. Our goal is to show that the generation of executable counterex-
amples is feasible on a set of non-trivial benchmarks. In the future, it would be
interesting to evaluate the effectiveness of executable counterexamples compared
to other outputs from an SMC, such as textual reports. All experiments were
done on a 16 core, 3.5GHz Intel Xeon CPU and 64GB of RAM. Each component
of our framework was restricted to 5 minutes CPU and 4GB memory limits.

For the evaluation, we took all benchmarks in the Systems, DeviceDrivers,
and ReachSafety categories of SV-COMP 2018. These categories are represen-
tative of real code. In total, this yielded 356 unsafe benchmarks. From those, our
SMC solved 144, failed in 18, and ran out of resources in 194. DirSE success-
fully concretized 141 counterexamples (out of 144). The three failures are due
to an abstraction mismatch between SMC and DirSE: SMC is not bit-precise
but DirSE is bit-precise. MB and EMV were successful on all 141 concretized
counterexamples. Finally, we ran all the binaries witnessing a counterexample.
We observed three outcomes: (a) the executable found the dedicated error func-
tion __VERIFIER_error in 24 cases, (b) the executable terminated but it did
not execute __VERIFIER_error in 44 cases, and (c) the executable ran out of
resources in 73 cases.

The detailed results for the successful 24 cases are shown in Table 1. The table
reports on the time in seconds taken by the SMC, DirSE, MB, and counterexam-
ple execution, respectively. We also show the number of CFG cut-points (#CP)



SMC DirSE MB+EMV Exec
Program T(s) #CP T(s) #BB T(s) T(s)

module_get_put-drivers-net-wan-farsync 8.72 3 12.66 11 0.7 0.0
32_7_linux-32_1-drivers-staging-keucr-keucr 2.38 3 0.88 11 2.17 0.0
32_7_single_drivers-usb-image-microtek 0.76 3 0.02 6 0.78 0.0
linux-3.12-rc1-144_2a-drivers-net-wireless-mwifiex-mwifiex_usb 23.39 3 13.82 15 0.74 0.0
32_7_cilled_linux-32_1-drivers-usb-image-microtek 0.64 3 0.01 6 0.79 0.0
32_7_cilled_linux-32_1-drivers-media-dvb-dvb-usb-dvb-usb-dib0700 2.19 3 0.48 11 2.76 0.0
32_7_cilled_linux-32_1-drivers-isdn-capi-kernelcapi 0.92 3 6.37 11 1.51 0.0
32_7_cilled_linux-32_1-drivers-media-video-mem2mem_testdev 5.28 3 3.5 16 0.8 0.0
32_7_cilled_linux-32_1-drivers-usb-storage-usb-storage 30.59 3 124.27 11 1.68 0.0
32_7_single_drivers-staging-media-dt3155v4l-dt3155v4l 2.63 3 5.47 12 0.93 0.0
43_1a_cilled_linux-43_1a-drivers-misc-sgi-xp-xpc 105.8 5 2.64 31 2.0 0.0
m0_drivers-usb-gadget-g_printer-ko-106_1a-2b9ec6c-1 8.35 2 0.41 16 0.65 0.0
linux-3.12-rc1.tar.xz-144_2a-drivers-staging-media-go7007-go7007-loader 0.82 5 0.24 35 0.44 0.0
205_9a_linux-3.16-rc1.tar.xz-205_9a-drivers-net-ppp-ppp_synctty 44.32 6 3.46 61 0.71 0.0
205_9a_linux-3.16-rc1.tar.xz-205_9a-drivers-net-wan-hdlc_ppp 195.22 5 57.41 52 0.66 0.0
43_2a_linux-3.16-rc1.tar.xz-43_2a-drivers-usb-host-max3421-hcd 2.3 4 5.28 36 0.82 0.0
linux-stable-9ec4f65-1-110_1a-drivers-rtc-rtc-tegra 0.78 6 0.2 35 0.52 0.0
linux-stable-39a1d13-1-101_1a-drivers-block-virtio_blk 1.71 5 7.04 37 0.52 0.0
linux-stable-42f9f8d-1-111_1a-sound-oss-opl3 6.03 4 14.08 22 0.61 0.0
linux-stable-2b9ec6c-1-106_1a-drivers-usb-gadget-g_printer 51.12 4 28.46 37 0.67 0.0
linux-stable-39a1d13-1-101_1a-drivers-block-virtio_blk 1.63 5 0.84 33 0.66 0.0
linux-stable-2b9ec6c-1-106_1a-drivers-usb-gadget-g_printer 43.1 4 17.29 26 0.69 0.0
linux-stable-d47b389-1-32_7a-drivers-media-video-cx88-cx88-blackbird 39.48 4 27.18 96 0.75 0.0
linux-4.2-rc1.tar.xz-08_1a-drivers-md-md-cluster 5.84 5 12.0 23 0.68 0.0

Table 1: Experimental results for validated counterexamples in SeaHorn

of the counterexample returned by SMC and the number of basic blocks (#BB)
that DirSE considered based on the counterexample. Note that sometimes DirSE
takes significantly longer than SMC. This is expected because DirSE uses more
complex semantics. Mock construction and execution take a negligible amount
of time.

Analysis of Results and Current Limitations. Results show that construct-
ing executable counterexamples is possible using current Software Model Check-
ing techniques. The main challenge is improving techniques for extracting the
memory model assumed by the SMC. Manually inspecting the failing cases shows
that the pointers extracted from external allocation sites are often dereferenced
further. Our current strategy traps such dereferences and replaces them with
some default values. While this is sometimes sufficient, it does not always work.
We have tried replacing such addresses by symbolic memory and using a sym-
bolic execution engine, but this did not scale.

One manual solution we found is to replace external dereferences by ex-
ternal functions calls. For example, dereferencing an external field foo->f is
replaced by a call to an external function get_foo_f(foo) that returns the
value of the field. Such external calls are trapped by the mock to produce the
required value. Selectively applying this manual technique, we converted several
failing cases to successful executable counterexamples. For example, Fig. 9 shows
the changes for usb_urb-drivers-input-misc-keyspan_remote.ko_false-
unreach-call.cil.out.i.pp.i. Three get functions are added to wrap around
memory references (the original code is in comments). These functions allow the
MB to inject the right values to guide the program toward the counterexam-
ple. While currently this is a manual process, we believe it can be significantly
automated in the future.



1 extern __u8 get_bEndpointAddress(struct usb_endpoint_descriptor const *e) ;
2 extern __u8 get_bmAttributes(struct usb_endpoint_descriptor const *e);
3 extern struct device* get_dev(struct usb_interface *iface);
4
5 __inline static int usb_endpoint_dir_in(struct usb_endpoint_descriptor const *ed) {
6 /* return (((int const )ed->bEndpointAddress & 128) == 128); */
7 return (((int const) get_bEndpointAddress(ed) & 128) == 128);
8 }
9 __inline static int usb_endpoint_xfer_int(struct usb_endpoint_descriptor const *ed) {

10 /* return (((int const )ed->bmAttributes & 3) == 3); */
11 return (((int const )get_bmAttributes(ed) & 3) == 3);
12 }
13 __inline static void *usb_get_intfdata(struct usb_interface *intf ) {
14 void *tmp___7 ;
15 /* struct device const* dev = (struct device const *)(& intf->dev); */
16 struct device const* dev = get_dev(intf);
17 tmp___7 = dev_get_drvdata(dev);
18 return (tmp___7);
19 }
20
21 int main(void) {
22 /* struct usb_interface *var_group1; */
23 struct usb_interface *var_group1 = ldv_undefined_pointer();
24 ...
25 }

Fig. 9: Example of manual modifications to generate executable counterexample

6 Related Work

Generating executable tests from Software Model Checking counterexamples is
not a new idea. One of the earliest approaches was proposed by Beyer et al. [3].
However, they do not consider programs that manipulate memory or use external
functions.
Executable Counterexamples from SMC. Rocha et al. [29] propose EZProofC,
a tool to extract information about program variables from counterexamples pro-
duced by ESBMC [12] and generate executable programs that reproduce the er-
ror. First, EZProofC extracts the name, value, and line number for each variable
assignment in the counterexample. Second, the code is instrumented so that the
original assignment statements are replaced with assignments of the correspond-
ing values in the counterexample. This approach is closely related to ours, but
there are some important differences. First, EZProofC assumes that it is easy to
match assignments in ESBMC counterexamples to the original source code. This
assumption does not hold if verification is combined with aggressive optimization
or transformations. In our experience, such optimizations are essential for scala-
bility. In contrast, we make no such assumptions. More importantly, EZProofC
does not deal with dereferences of pointers allocated by external functions. We
found this to be prevalent in benchmarks, difficult to address, and is a primary
focus of our work.

Muller and Ruskiewicz [28] produce .NET executable from a Spec# program
and a symbolic counterexample. Counterexamples may include complex types
including classes, object creation, and initialization of their fields. There are
again some key differences. First, they target Spec#, a language without direct
pointer manipulation, while we target C. As a result, our memory models differ



significantly since Spec# is type-safe while C is not. Second, their executables
simulate the verification semantics as defined by the verifier rather than the
concrete semantics as defined by the language. Instead, our executables simulate
the concrete semantics of C programs. As a result, their executables cannot
guarantee the existence of an error even when an error is exercised since it might
be ruled out by the concrete semantics. In contrast, in our approach an error is
always consistent with the concrete semantics when the executable triggers it. A
downside to our approach, however, is that our approach might fail to generate
a successful executable counterexample when the verification semantics differ
significantly from the concrete semantics. Third, their executables do not contain
the original CUA but instead an abstraction of it where loops are modeled with
loop invariants and methods with contracts.

Csallner and Smaragdakis [14] propose CnC (Check ’n’ crash), a tool that
uses counterexamples identified by ESC/Java [15], to create concrete test-cases
(set of program inputs) that exercise the identified violation. Test-cases are then
fed to the testing tool JCrasher [13]. When ESC/Java identifies a violation, CnC
turns the counterexample into a set of constraints, which are solved to yield a
program that exercises the violation. CnC is able to produce programs that con-
tain numeric, reference, and array values. As in our framework, the executables
produced by CnC simulate the concrete semantics of the underlying language
(Java for CnC). Apart from using different memory models, the main distinc-
tion is that CnC aims at generating test-cases, while we focus on generating
mocks that synthesize the external environment of the program. Test-cases are,
in general, harder to produce because of the difficulty of ensuring that library
calls produce the outputs needed to exercise the error. Instead, we try to gen-
erate the coarsest mocks for those library calls that can still exercise the error.
Therefore, we believe our methodology can scale better for larger applications.

Recently, Beyer et al. [4] proposed an approach similar to Rocha et al. [29].
Given a counterexample in the SV-COMP [2] witness automaton format, orig-
inal source is instrumented by assigning values from the counterexample. The
approach is supported by CPAChecker [5] and Ultimate Automizer [24]. Similar
to Rocha et al. [29], they do not deal with externally allocated pointers.

Test Case Generation.Dynamic Model Checking (DMC) adapts Model Check-
ing to perform testing. One of the earliest DMC tools is VeriSoft [16] which has
been very successful at finding bugs in concurrent software. The tool provides
a simulator that can replay the counterexample but it does not generate exe-
cutables. Test-case generation tools such as Java PathFinder [32], DART [18],
EXE [8], CUTE [30], Klee [7], SAGE [19], and PEX [31] generate test-cases that
can produce high coverage and/or trigger shallow bugs based on dynamic sym-
bolic execution (DSE). The Yogi project [21,1,20] combines SMC with testing
to improve scalability of the verification process. They compute both over- and
under-approximations of the program semantics so that they can both prove ab-
sence of bugs and finding errors in a scalable way. Yogi tools have been integrated
in the Microsoft’s Static Driver Verifier. Christakis and Godefroid [9] combine
SAGE [19] and MicroX [17] to prove memory safety of the ANI Windows Image



Parser. SAGE starts from a random test case and performs DSE while comput-
ing procedure summaries. MicroX computes sets of inputs and outputs for ANI
functions without any provided information while allocating memory on-the-fly
for each uninitialized memory address. They model precisely the concrete se-
mantics of the program: “symbolic execution of an individual path has perfect
precision: path constraint generation and solving is then sound and complete”.

These tools model the concrete semantics of the program and allocate mem-
ory on-the-fly while we deliberately allow the SMC to use abstract semantics or
even be unsound. By doing so, the verification process can scale. The challenge
for us is to synthesize an environment that can exercise the error in the pres-
ence of uninitialized memory, while for these tools, the process of lifting an error
execution to a test case is relatively simpler.

Guided Symbolic Execution. Hicks et al. [27] propose two heuristics to guide
symbolic execution (SE) to reach a particular location. The first uses a distance
metric to guide SE while the second uses the callgraph to run SE in a forward
manner while climbing up through the call chain. Christakis et al. [11] introduce
a program instrumentation to express which parts of the program have been ver-
ified by a static analysis tool, and under which assumptions. They use PEX [31]
to exercise only those unverified parts. The same authors [10] instrument the
code of a static analysis tool to check for all known unsound cases and provide
a detailed evaluation about it. In all these cases, symbolic execution is guided
in an intelligent manner to reach certain locations of interest. However, none of
these techniques focus on dealing with memory.

7 Conclusion

We presented a new framework to generate mock environments for the Code
Under Analysis (CUA). A mock environment can be seen as actual binary code
that implements the external functions that are referenced by the CUA so that
the CUA execution mirrors the counterexample identified by the Model Checker.
We believe that having executable counterexamples is essential for software engi-
neers to adopt Model Checking technology since they would be able to use their
existing toolchain. Moreover, we described formally the concrete semantics of
executable counterexample based on a simple extension to the standard opera-
tional semantics for C programs. This significantly differs from the textual-based
counterexample representation used by SV-COMP tools. Finally, we have imple-
mented an instance of the framework in SeaHorn, and tested it on benchmarks
from SV-COMP 2018. Although the initial results are promising, more work re-
mains to be done, especially to handle counterexamples with more complicated
memory structures.
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