
BAP: A Binary Analysis Platform

David Brumley

Ivan Jager

Thanassis Avgerinos

Edward J. Schwartz

Carnegie Mellon University

3 Simple Lines

add %eax , %ebx ; ebx = eax+ebx (sets OF, SF, ZF, AF, CF, PF)
shl %cl , %ebx ; ebx = ebx << cl (sets OF, SF, ZF, AF, CF, PF)
jc error ; jump to error if carry flag is set

Can you reach the error?

7/20/2011 Carnegie Mellon University 2

SHL Specification

(taken from Intel Manual)

Dynamic Symbolic Execution on
Binaries

• Finding inputs that explore different paths
after executing 100,000s of assembly
instructions

7/20/2011 Carnegie Mellon University 4

%eax is input
cmp %eax, $0

jg L_1

mul %eax, %eax
cmp %eax, 0x42424242

je L_2

…
f

t f

(x > 0) Λ (x*x = 0x42424242)

Path Predicate

[Schwartz et al, USENIX’11]

Compiler-like Design

BAP Intermediate
Language

x86 Binaries

ARM Binaries

Traces Program
Analysis

Framework

7/20/2011 Carnegie Mellon University 5

SMTLIB
formulas

Static & Dynamic Analysis

7/20/2011 Carnegie Mellon University 6

BAP Intermediate
Language

Program
Analysis

Framework

x86 Binaries

ARM Binaries

Traces

SMTLIB
formulas

A Simple Intermediate Language

• Consists of 17 language constructs

– 7 statements and 10 expressions

• Our binary symbolic executor consists of ~250
lines of OCaml code

7/20/2011 Carnegie Mellon University 7

BAP 3

Fig. 1. The BAP binary analysis architecture and components.

program ::= stmt *

stmt ::= var := exp | j mp exp | cj mp exp,exp,exp | asser t exp

| l abel label kind | addr address | speci al str ing

exp ::= l oad(exp, exp, exp, τreg) | st or e(exp, exp, exp, exp, τr eg) | exp ♦ b exp

| ♦ u exp | var | l ab(str ing) | integer | cast (cast kind, τr eg, exp)

| l et var = exp i n exp | unknown(str ing, τ)

Table 1. An abbreviated syntax of the BAP IL.

t ions explicit ly, BAP also exposes the low-level semant icsof memory where loads
and stores are byte-addressable and thus can result in “overlapping operat ions” .

An example of the IL produced for Example 1 is (after deadcode eliminat ion):

1 ad d r 0x 0 @asm ” add %eax ,% eb x ”
2 t : u 32 = R EBX : u 32
3 R EBX : u 32 = R EBX : u 32 + R EAX : u 32
4 R CF : b oo l = R EBX : u 32 < t : u32
5 ad d r 0x 2 @asm ” sh l %c l ,% eb x ”
6 t 1 : u 32 = R EBX : u 32 >> 0x 20 : u32 − (R ECX : u 32 & 0 x 1 f : u32)
7 R CF : b oo l =
8 ((R ECX : u 32 & 0 x 1 f : u 32) = 0 : u 32) & R CF : b oo l |
9 ˜ ((R ECX : u 32 & 0 x 1 f : u 32) = 0 : u 32) & l ow : b oo l (t 1 : u32)

10 ad d r 0x 4 @asm ” j c 0 x 000000000000000a ”
11 cj m p R CF : b oo l , 0x a : u32 , ” nocj m p0 ” # b r an ch t o 0x a i f R CF = t r u e
12 l a b e l n ocj m p 0

3 BA P A rchit ect ural Overview

BAP is divided into front-end and back-end components that are connected by
the BAP intermediate language (IL), as shown in Figure 1. The front end is
responsible for lift ing binary code for the supported architectures to the IL. The
back-end implements our program analyses and verificat ions for low-level code.

The front end reads binary code from an execut ion trace or a region of a
binary executable. When lift ing instruct ions from a binary, BAP uses a linear
sweep disassembly algorithm. The user or an analysis is responsible for direct ing
BAP to properly aligned instruct ions. The result of lift ing is an IL program.

An abbreviated definit ion of the IL syntax is shown in Table 1; the full IL syn-
tax and semant ics areprovided at [4]. The speci al statement indicates a system
call or other unmodeled behavior. Other statements have their obvious meaning.
All expressions in BAP are side-effect free. The unknown expression indicates
an unknown value; for instance, we use this to model the contents of registers
having an undefined state after a specific instruct ion (e.g. the AF flag after shl).
The semant ics of l oad(e1, e2, e3, τreg) is to load from the memory specified by e1

at address e2. e3 tells us the endianness to use when loading bytes from memory,

Extensible Program Analysis

7/20/2011 Carnegie Mellon University 8

BAP Intermediate
Language

Program
Analysis

Framework

AST & SSA Code
Representations

Graph
Representations

Dataflow Analysis

Program & Formula
Optimizations

x86 Binaries

ARM Binaries

Traces

SMTLIB
formulas VC Generation

Verification Condition Generation

• BAP provides support for the following VC
generation algorithms:
– Dijkstra’s WP

– Flanagan & Saxe’s WP

– Directionless WP

– Forward Symbolic Execution

• Interfaces to SMT solvers
– Support for SMTLIB1 & SMTLIB2 formats

7/20/2011 Carnegie Mellon University 9

Static Checking of Safety Properties

• GNU coreutils leaf
functions
– Integer overflows

– Memory overwrites

• Formula
optimizations
improved
performance up to
8x

7/20/2011 Carnegie Mellon University 10

[Jager et al, TR’10]

log10(il_size)

lo
g
1

0
(t

im
e

)

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

dwp

3.5 4.0 4.5 5.0

flanagansaxe

3.5 4.0 4.5 5.0

fse

3.5 4.0 4.5 5.0

wp

3.5 4.0 4.5 5.0

BAP in research

7/20/2011 Carnegie Mellon University 11

Move Gadget with
Inreg = eax, Outreg = ebx

Q: Return-Oriented Programming

• Finding byte-sequences (gadgets) that
perform certain actions

7/20/2011 Carnegie Mellon University 12

Q

Binary
Program

Move Semantics:
Outreg <- Inreg

imul $1, %eax, %ebx
ret

Lifting Byte Sequences
to the IL

Using WP to verify the
gadget computations

Random Testing to make
gadget finding faster

[Schwartz et al, USENIX’11]

EXPLOIT
GENERATION

REVERSE
ENGINEERING MALWARE

ANALYSIS
ATTACK

PREVENTION

Many Applications in Security

Don’t redo the engineering. Do the science.

7/20/2011 Carnegie Mellon University 13

Are we alone?

Codesurfer/x86
[Balakrishna et al]

Jakstab
[Kinder et al]

BAP

BINCOA
[Bardin et al]

Vine
[Brumley et al]

Conclusion

• BAP is the newest incarnation of our
framework for binary analysis

• BAP comes with a variety of algorithms and
features to make analysis easier

• You can download it for free at:

 http://bap.ece.cmu.edu/

BAP 0.3 just came out!

7/20/2011 Carnegie Mellon University 15

http://bap.ece.cmu.edu/
http://bap.ece.cmu.edu/
http://bap.ece.cmu.edu/

Thank you!

thanassis@cmu.edu
http://www.ece.cmu.edu/~aavgerin

http://bap.ece.cmu.edu/

Questions?

mailto:thanassis@cmu.edu
http://www.ece.cmu.edu/~aavgerin
http://bap.ece.cmu.edu/

