Native x86 Decompilation Using
Semantics-Preserving Structural Analysis
and Iterative Control-Flow Structuring

Edward J. Schwartz”, JongHyup Lee™
Maverick Woo™, and David Brumley”

Carnegie Mellon University °
Korea National University of Transportation

Which would you rather analyze?

push
mov
sub
mov1
jmp
mov
imul
mov
subl
cmpl
Jg
mov
leave
ret

8/15/13

%ebp

%esp, %ebp
$0x10, %esp
$0x1, -0x4(%ebp)
1d <f+0x1d>
-0x4(%ebp) ,%eax
Ox8(%ebp) , %eax
%eax, -ox4(%ebp)
$0x1,0x8(%ebp)
$0x1,0x8(%ebp)
f <f+oxf>
-0x4(%ebp) ,%eax

Variables

Usenix Security 2013

int f(int c) {

}

gk accum = 1;
for (; c > 1; c--) {
accum = accum * c;

}

return accum;

010100101010101
001010110111010
101001010101010

101111100010100
010101101001010
100010010101101
010101011010111

Compiled
Binary

8/15/13

Decompilers for Software Security

* Manual reverse-engineering
— Traditional decompiler application

* Apply wealth of existing source-code
techniques to compiled programs [Chang06]

— Find bugs, vulnerabilities

Heard at Usenix Security 2013, during
Dowsing for Overflows

— “We need source code to access the high-level
control flow structure and types”

8/15/13 Usenix Security 2013

Desired Properties for Security

1. Effective abstraction recovery

— Abstractions improve comprehension

8/15/13 Usenix Security 2013

Effective Abstraction Recovery

s1; s1;
while (el) { L1: if (el) { goto L2; }
if (e2) { break; } else { goto L4; }
s2; L2: if (e2) { goto L4; }
} L3: s2; goto L1;
s3; L4: s3;
More Less

Abstract Abstract

8/15/13 Usenix Security 2013

Desired Properties for Security

1. Effective abstraction recovery

— Abstractions improve comprehension

2. Correctness
— Buggy(Decompiled) =» Buggy(Original)

8/15/13 Usenix Security 2013

Correctness

int £ (int x) { _

Original
Source

Are these two programs

semantically equivalent?

8/15/13 8

Prior Work on Decompilation

* Over 60 years of decompilation research

 Emphasis on manual reverse engineering

— Readability metrics
LOC decompiled
LOC assembly

* Compression ratio: 1 —

 Smaller is better

* Little emphasis on other applications
— Correctness is rarely explicitly tested

8/15/13 Usenix Security 2013

The Phoenix C Decompiler

8/15/13 Usenix Security 2013

10

How to build a better decompiler?

* Recover missing abstractions one at a time

— Semantics preserving abstraction recovery

* Rewrite program to use abstraction

* Don’t change behavior of program
* Similar to compiler optimization passes

8/15/13 Usenix Security 2013

11

Semantics Preservation

Abstraction
Recovery
s1; sl;
L1: if (el) { goto L2; } while (el) {
else { goto L4; } if (e2) { break; }
L2: if (e2) { goto L4; } s2;
L3: s2; goto L1; }
L4: s3; S3;

Are these two programs

semantically equivalent?

8/15/13

How to build a better decompiler?

* Recover missing abstractions one at a time

— Semantics preserving abstraction recovery
* Rewrite program to use abstraction
* Don’t change behavior of program
e Similar to compiler optimization passes

* Challenge: building semantics preserving
recovery algorithms

— This talk

* Focus on control flow structuring
* Empirical demonstration

8/15/13 Usenix Security 2013

13

8/15/13

010100101010101
001010110111010
101001010101010
101111100010100
010101101001010
100010010101101
010101011010111

int £ (int x) {

inty = 1;

while (x > y) {
y++;

}

return y;

Phoenix Overview

‘4 3\

Type

CFG Recovery e

Control
Flow
Structuring

Source-code
Output

N\ >

New in Phoenix

Usenix Security 2013

14

Control Flow Graph Recovery

010100101010101
001010110111010
101001010101010

101111100010100 CFG ReCOVEI‘y
010101101001010

100010010101101
010101011010111

* Vertex represents straight-line binary code

* Edges represents possible control-flow transitions
* Challenge: Where does jmp %eax go?

* Phoenix uses Value Set Analysis [Balakrishnan10]

8/15/13 Usenix Security 2013 15

Type Inference on Executables (TIE) [Lee11]

How does each instruction constrain the types?

movl (%eax), %ebx

* Constraint 1: %eax is a pointer to
type <a>

* Constraint 2: %ebx has type <a>

* Solve all constraints to find <a>

8/15/13 Usenix Security 2013 16

Control Flow Structuring

8/15/13 Usenix Security 2013

17

Control Flow Structuring

Compllation

Control Flow
Structuring

8/15/13 Usenix Security 2013 18

Control Flow Structuring:

Don’t Reinvent the Wheel
 Existing algorithms

— Interval analysis [aien7o]
* Identifies intervals or regions

— Structural analysis [sharirso]
* Classifies regions into more specific types

* Both have been used in decompilers

* Phoenix based on structural analysis

8/15/13 Usenix Security 2013

19

Structural Analysis

* Iteratively match patterns to CFG
— Collapse matching regions

Bl

B2B3

if-then-else while

* Returns a skeleton: while (e) {if (¢’) {...} }

8/15/13 Usenix Security 2013

20

Structural Analysis Example

:

&Hiie (...) { if (...) {...} else {...} };

.., ...J

8/15/13 Usenix Security 2013 21

Structural Analysis Property Checklist

1. Effective abstraction recovery

8/15/13 Usenix Security 2013

22

Structural Analysis Property Checklist

— Graceless failures for unstructured programs

* break, continue, and goto statements
* Failures cascade to large subgraphs

8/15/13 Usenix Security 2013

23

Unrecovered Structure

s1; s1;

while (el) { L1: if (el) { goto L2; }
if (e2) { break; } else { goto L4; }

) Fix: New structuring

algorithm featuring

[terative Refinement

.

This t dge
prever ’ress

8/15/13 Usenix Security 2013 24

Iterative Refinement

* Remove edges that are preventing a match

— Represent in decompiled source as break, goto,
continue

 Allows structuring algorithm to make more
progress

8/15/13 Usenix Security 2013 25

Iterative Refinement

sl; s1;

while (el1) { while (el) {
if (e2) { break; } if (e2) { break; }
S2; S2;

} }

s3; S3;

Original Decompiled

8/15/13 Usenix Security 2013 26

Structural Analysis Property Checklist
o —brectie o osraction rocouoyy

— Graceless failures for unstructured programs
* break, continue, and gotos
* Failures cascade to large subgraphs

2. Correctness

8/15/13 Usenix Security 2013

27

Structural Analysis Property Checklist
o —brectie o osraction rocouoyy

— Graceless failures for unstructured programs
* break, continue, and gotos
* Failures cascade to large subgraphs

2—Correctness

— Not originally intended for decompilation
— Structure can be incorrect for decompilation

8/15/13 Usenix Security 2013 28

Natural Loop Correctness Problem

Fix: Ensure patterns are
Semantics Preserving

while (true) {
sl; if (x==1) goto L2;
if (y==2) goto L1;

}

8/15/13 Usenix Security 2013 29

Semantics Preservation

* Applies inside of control flow structuring too

O

8/15/13 Usenix Security 2013 30

Phoenix Implementation and
Evaluation

8/15/13 Usenix Security 2013

31

8/15/13

Readability: Phoenix Output

int £ (void) {
int a = 42;
int b = 9;
while (a) {
if (b) {
puts(“c”);
break;
} else {
puts(”d”);
}
a--;
b++;
}
puts ("e");
return 0;

Original

t reg32 f (void) {
t reg32 v20 = 42;
t reg32 v24;

for (v24 = 0; v20 != 0;

v24 = v24 + 1) {
if (v24 1= 9) {

puts ("c");
break;
}
puts ("d");
v20 = v20 - 1;
}
puts ("e");
return 0;
}
Decompiled

Usenix Security 2013

32

Large Scale Experiment Details

* Decompilers tested
— Phoenix

— Hex-Rays (industry state of the art)
— Boomerang (academic state of the art)

—Beemerang

* Did not terminate in <1 hour for most programs

* GNU coreutils 8.17, compiled with gcc

— Programs of varying complexity
— Test suite

8/15/13 Usenix Security 2013

33

Metrics (end-to-end decompiler)

1. Effective abstraction recovery

— Control flow structuring

2. Correctness

8/15/13 Usenix Security 2013

34

Control Flow Structure:

Gotos Emitted (Fewer Better)
51

Phoenix Hex-Rays

8/15/13 Usenix Security 2013 35

8/15/13

Control Flow Structure:

Gotos Emitted (Fewer is Better)
1229

51
[

Phoenix Phoenix (orig. structural Hex-Rays
analysis)

Usenix Security 2013 36

|deal: Correctness

int £ (int x) {

Original
Source

Recovered
Source

Are these two programs

semantically equivalent?

8/15/13 37

Scalable: Testing

int £ (int x) {

Passes tests

Passes tests
Recovered
Source

Original
Source

[s the decompiled

program consistent with
test requirements?

8/15/13 38

Number of Correct Utilities

120 - 107
100 4 All Utilities
80 -
60
60 -
40 -
28
) j
O _

Hex-Rays Phoenix

8/15/13 Usenix Security 2013

Correctness

 All known correctness errors attributed
to type recovery

— No known problems in control flow structuring

* Rare issues in TIE revealed by Phoenix
stress testing
— Even one type error can cause incorrectness
— Undiscovered variables

— Overly general type information

8/15/13 Usenix Security 2013 40

8/15/13

Conclusion

Phoenix decompiler
— Ultimate goal: Correct, abstract decompilation

— Control-flow structuring algorithm
* Iterative refinement
* Semantics preserving schemas

End-to-end correctness and abstraction recovery experiments on
>100 programs

— Phoenix
 Control flow structuring: ©
e Correctness: 50% ®

Correct, abstract decompilation of real programs is within reach
— This paper: improving control flow structuring
— Next direction: improved static type recovery

Usenix Security 2013

41

Thanks! ©

* Questions?

Edward J. Schwartz

edmcman@cmu.edu

http://www.ece.cmu.edu/~ejschwar

8/15/13 Usenix Security 2013

42

mailto:edmcman@cmu.edu

END

