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ABSTRACT

Code reuse attacks have been the subject of a substantial amount of
research during the past decade. This research largely resulted from
early work on Return-Oriented Programming (ROP), which showed
that the then newly proposed Non-Executable Memory (NX) de-
fense could be bypassed. More recently, the research community has
been simultaneously investigating new defenses that are believed
to thwart code reuse attacks, such as Control Flow Integrity (CFI),
and defense-aware techniques for attacking these defenses, such as
Data-Oriented Programming (DOP). Unfortunately, the feasibility
of defense-aware attacks are very dependent on the behaviors of
the attacked program, which makes it difficult for defenders to un-
derstand howmuch protection a defense such as CFI may provide.
To better understand this, researchers have introduced automated
defense-aware code reuse attack systems.Unfortunately, the handful
of existing systems implement a single fixed, defense-specific strat-
egy that is complex and cannot be used to consider other defenses.

In this paper, we propose a generic framework for automatically
discovering defense-aware code reuse attacks in executables. Unlike
existing work, which utilizes hard-coded strategies for specific de-
fenses, our framework can produce attacks for multiple defenses by
analyzing the runtimebehavior of the defense. Thehigh-level insight
behind our framework is that code reuse attacks can be defined as
a state reachability problem, and that defenses prevent some transi-
tions between states. We implement our framework as a tool named
Limbo, which employs an existing binary concolic executor to solve
the reachability problem.We evaluate Limbo and show that it excels
when there is little code available for reuse, making it complemen-
tary to existing techniques. We show that, in such scenarios, Limbo
outperforms existing systems that automate ROP attacks, as well as
systems that automate DOP attacks in the presence of fine-grained
CFI, despite having no special knowledge about ROP or DOP attacks.
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1 INTRODUCTION

Over the past decade, there has been a flurry of research on tech-
niques for constructing code reuse attacks, in which attackers hijack
control of a program by leveraging code that was intended to be there
as part of the original program. Before code reuse attacks, the pre-
ferred exploitation strategy was to inject new executable code into
memory and execute it. However, this strategy was blocked by the
Non-Executable memory (NX) [23] defense. Attackers eventually
discovered that they could coerce the program into desired states and
bypass NX by reusing code fragments that were already part of the
program, and code reuse attacks were born. One of the best-known
techniques for constructing such attacks is Return-Oriented Pro-
gramming (ROP) [29], so named because attackers construct attacks
by identifying code fragments called gadgets that perform useful
functions and end in ret instructions.

Since the development of ROP attacks, defenders have developed
newer and more sophisticated defenses explicitly designed to stop
such attacks. Many of these new defenses are variants of Control
Flow Integrity (CFI) [1, 2, 12, 22]. CFI employs a static analysis to
over-approximate the intended targets of each indirect jump in a
program. At runtime, CFI checks that each jump only transfers to
one of these intended targets. If not, CFI terminates the program,
since this is a sign that control flow has been hijacked. Since many
code reuse attacks, including ROP attacks, rely on the ability to jump
to an arbitrary location at an indirect jump, this greatly increases
the difficulty of constructing attacks.

Although defenses such as CFI break many code reuse attacks,
there are still avenues to attack them, and researchers have devel-
oped a variety of defense-aware strategies for targeting defenses.
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For instance, early implementations of CFI purposefully favored
performance over precision [35, 36], but attackers demonstrated
that this deliberate imprecision was enough to permit so-called Call-
Oriented Programming (COP) attacks [6, 10, 16]. Several years later,
researchers showed that even with an ideal CFI implementation,
attackers can still achieve Turing-complete control in at least some
programs [17]. These attacks are called Data-Oriented Programming
(DOP) attacks because they exploit the attacker’s control over the
program’s data rather than its control flow.

Although these results are somewhat negative for defenders, one
silver lining is that defense-aware attacks are more reliant upon the
behaviors of the original program, and this means that the feasi-
bility of such attacks varies on a per-program basis. Unfortunately,
because these attacks have historically been identified and crafted
by hand, it can be difficult for a defender to determine if a specific
programwould be protected by CFI or a similar defense. To address
this problem, researchers have proposed automated systems that
find code reuse attacks [18, 19, 24, 28, 34].

Unfortunately, the vast majority of automated code reuse attack
systems are not defense-aware, which means that they will com-
pletely fail in the presence of defenses such as CFI. A handful of
these systems are aware of CFI [18, 34], but these systems are com-
plex and only target a single, hard-coded CFI variant. This makes
them unsuitable for defenders who are trying to select a defense that
provides adequate protection for their software.

In this paper, we propose a generic framework for automatically
discovering defense-aware code reuse attacks in executables. Unlike
existing work, our framework can produce attacks for defenses by
analyzing their runtime behavior. As a result, our framework does
not require hard-coded strategies or models of defenses, and can
even be used with unknown defenses for which a defense-aware
attack strategy has not yet been proposed.

The high-level idea underlying our framework is that code reuse
attacks can be reduced to a state reachability (e.g., software model
checking) problem, and defenses naturally restrict the state transi-
tions that an attacker can employ. For example, when CFI detects a
jump to an unintended target, it halts the program, which obviously
prevents further state transitions. This is vastly different than prior
work on automating code reuse attacks, which has always focused
on automating a specific defense-aware technique for constructing
code reuse attacks (e.g., DOP) that wasmanually discovered through
human insight [18, 34].

Because our framework reasons about code reuse attacks in a
generic way, it can naturally find attacks corresponding to currently
known techniques including ROP [29], JOP [4, 8], COP [6, 10, 16],
andDOP [17].Althoughour framework cangenerate these attacks, it
is not limited to them. Our approach can (and does!) discover attacks
that do not correspond to known techniques for code reuse attacks.
Because of this, our framework can often find attacks when other,
less flexible techniques fail. For example, in our evaluation, we show
that when considering CFI, our technique outperforms a system that
was explicitly designed to find DOP attacks [18], even though our
technique has no special knowledge about CFI. We also show that,
in the absence of defenses other than the standard ASLR and NX
defenses (see Section 2), our technique can find code reuse attacks us-
ing extremely small amounts of code (less than 10 KiB), which to the
best of our knowledge is outside the ability of any existing technique.

We demonstrate our techniques by implementing them in a tool
calledLimbo.WedesignedLimbo to leverage existingworkonbinary
concolic execution [7]. Our framework defines code reuse attacks
as a state reachability problem, and Limbo uses concolic execution
to solve this problem by exploring the target program’s state space.
Unlike existing automated approaches for constructing code reuse
attacks [18, 28, 34], which are quite complicated, our proposed ap-
proach is conceptually simple and involves relatively fewmodifica-
tions to an existing concolic executor. Specifically,wemodified a con-
colic executor to (1) guide execution using a heuristic-based search
strategy, and (2) detect when a code reuse attack has been found.

We evaluate Limbo against existing techniques and show that it
complements their strengths. Specifically,Limboexcelswhen there is
little codeavailable to reuse,whichchallenges existing techniquesbe-
cause there is not enough code to match their built-in strategies. We
first evaluate Limbo’s ability to automatically findCFI-aware attacks
for 10 network and system utilities such as apache and opensshd.
We show that Limbo outperforms BOPC [18], the state-of-the-art
system for automatically discovering CFI-aware DOP attacks, even
though Limbo contains no special logic for reasoning about CFI
or DOP attacks. Second, we test how well Limbo performs in the
absence of defenses when run on very small programs. We specif-
ically evaluate Limbo on a random sample of twenty small utility
programs in Ubuntu. We show that Limbo outperforms angrop, a
popular ROP automation tool that is part of the angr binary analysis
framework [3, 31], and that Limbo is even able to produce attacks
when given access to less than 10 KiB of code.

Overall, we make the following contributions:
• We propose a generic framework for automatically identifying
defense-aware code reuse attacks. Unlike the current state of the
art [18, 34],which is to implement ahard-coded strategy that is spe-
cific to a single type of defense, our framework can identify attacks
for multiple defenses by considering their runtime behaviors.

• Weimplementour framework in a tool calledLimbo.We showhow
existing binary concolic executors can be leveraged to implement
our framework using a small set of modifications.

• Finally, we show that Limbo outperforms both angrop [31] and
BOPC [18], state-of-the-art tools for automatically constructing
ROP and DOP attacks respectively, when there is little code avail-
able for reuse.

2 BACKGROUND

In this section, we briefly review the background and history of code
reuse attacks. We also introduce some of the notable defenses de-
signed to protect against code reuse attacks, and the defense-aware
strategies that have been proposed to attack them.

2.1 Non-ExecutableMemory

Early control flow attacks consisted of two steps. The attackerwould
first inject shellcode, executable code that performs an attacker’s
desired computation such as spawning a shell, into the target pro-
cess’s memory space. She would then use a vulnerability to transfer
control flow to her injected code. At this point, she could execute
arbitrary instructions in the context of the vulnerable program.

In response, researchers developed the Non-Executable memory
(NX) defense [23], which is also called DEP and W⊕X, to prevent



such attacks. NX is very widely deployed: if you run a program on
a conventional PC, tablet, or mobile phone, it is very likely that your
programwill be protected byNX.At a high level, NXprevents attack-
ers from executing code that they have injected into the program’s
memory space. It does this by ensuring that certain memory regions,
such as the stack, are not executable. On most platforms, this is now
implemented efficiently using hardware support.

2.2 Code Reuse Attacks and ROP

With the introduction of NX, attackers realized thatwhile they could
not introduce new code into a process, they could still reuse code that
was already there for other purposes, and such attacks are called
code reuse attacks. One of the earliest types of code reuse attacks
was return-to-libc attacks, which allowed attackers to reuse entire
functions from libc by calling them. For example, by returning to
system("/bin/sh"), the attacker could spawn a shell and bypass
NX. Although powerful, the downside to return-to-libc attacks is
that the attacker is limited to functions available in the vulnerable
program’s address space.

Return-Oriented Programming (ROP) [29] is a generalization of
return-to-libc attacks. In a ROP attack, the attacker searchesmemory
for gadgets, or instruction sequences ending with ret, and chains
the gadgets together to implement the computation she wants. ROP
attacks are desirable because they allow the attacker to perform com-
putations beyond the functions available in the vulnerable program’s
address space. The earliest work on ROP used gadgets from large
shared libraries such as libc, and focused on Turing-completeness.

2.3 Modern Code Reuse Attacks

Twoexternal forces have caused attackers to developnew techniques
for producing code reuse attacks. The first of these is the introduc-
tion of Address Space Layout Randomization (ASLR), which forced
attackers to build strategies for producing code reuse attacks using
less code. The second force consists of defenses thatwere designed to
protect against code reuse attacks. In response, attackers developed
new defense-aware techniques to attack them.

2.3.1 ASLR and Smaller Code Reuse Opportunities. ASLR [30] is
another widely deployed defense that was proposed in response to
traditional control flow attacks. Unlike NX, which stops the attacker
fromexecuting shellcode,ASLRstops theattacker fromdirectly refer-
ring to objects in memory by randomizing their locations. Although
the original goal of ASLRwas to make it challenging for the attacker
to reference their shellcode in memory, it also broke return-to-libc
and early ROP attacks as a side effect. Because the location of libc
was now randomized, it made it difficult for an attacker to reference
ROP gadgets in libc since she would not know their addresses.

Because of compatibility and performance issues, early ASLR
implementations had serious limitations and most programs would
have at least some executable code that was not randomized [25, 28],
although it was often smaller than libc by orders of magnitude. In
practice, attackers began to build code reuse attacks from these
smaller code bases. However, unlike in traditional academic ROP
research, attackers did not focus on Turing-completeness. Instead,
they used ROP as a stepping stone to disable NX by calling functions
such as mprotect on Linux or VirtualProtect onWindows.

More recently, modern systems have been slowly evolving to
fully randomize all executable code addresses by default. For exam-
ple, to enable full randomization, Ubuntu Linux began compiling
programs as Position Independent Executables (PIEs) on all archi-
tectures by default, starting with Ubuntu 17.10 [32]. It is important
to note, however, that some programs are still not compiled as PIEs.
One of the authors noted that gcc, emacs, Mendeley, docker, and
python were not PIEs on his workstation, for example. When at-
tacking fully randomized programs, attackers generally have two
options. If the attacker wants an attack that will succeed determinis-
tically (i.e., regardless of the memory layout), she can try to discover
an information leak vulnerability that will reveal the address of a
code module in memory. Once she knows this address, she can cus-
tomize her attack for that particular memory layout. If the attacker
does not mind if her attack only succeeds non-deterministically, she
can simply enumerate the possible memory layouts and attempt the
attack for each one [30]. In this paper, we assume that the attacker
knows the address of the program image, either from an informa-
tion leak or brute forcing. This is a much weaker assumption than
other work in this area, which assumes the ability to read and write
at arbitrary locations [18, 33].

2.3.2 Code Reuse Defenses and Attacks. The second evolution of
code reuse attacks has been in response to defenses designed to stop
code reuse attacks. Since the development of ROP, there have been
several cycles of code reuse attacks inspired by advances in defenses,
and vice versa.

Some of the earliest defenses focused exclusively on ret instruc-
tions [9, 11, 20], which seemed promising until attackers proposed
a new technique that did not need to use ret instructions. The idea
behind this new technique, which is called Jump Oriented Program-
ming (JOP) [4, 8], is to find gadgets that end in instruction sequences
besides ret but are semantically equivalent, such as pop %eax; jmp
*%eax [8]. A more sophisticated approach is to identify a dispatcher
gadget that replaces the behavior of the ret instruction [4]. In either
case, ret instructions are no longer needed, which allows the above
defenses to be bypassed.

Many of the other techniques for code reuse attacks are in re-
sponse to Control Flow Integrity (CFI) [1] defenses. The idea behind
CFI is to detect when a program’s execution path deviates from
a statically computed Control Flow Graph (CFG) of the program.
When a program takes an execution path that is not allowed by the
program’s CFG, CFI terminates the program. CFI implementations
are very broadly categorized as either coarse-grained [35, 36] or fine-
grained [12, 22] CFI. As its name implies, coarse-grained CFI is less
precise, and thus is more likely to allow a control flow transition that
is not possible in the original program’s CFG.

In response to these defenses, attackers developed a variety of
defense-aware strategies that target both coarse-grained [6, 10, 16]
and fine-grained [5, 13, 17, 26] CFI. These techniques include Call-
Oriented Programming (COP) [6, 10, 16], Data-Oriented Program-
ming (DOP) [17], and Counterfeit Object-Oriented Programming
(COOP) [26]. At a very high level, all of these are techniques for
crafting code reuse attacks that are aware of different types of CFI
defenses. The existing systems that automate defense-aware code
reuse attacks automate one of these existing strategies [18, 34].



3 IMPLEMENTATION

A code reuse attack can be defined as a program execution from a
vulnerability to an attacker’s desired goal state. The vulnerability
and the goal state in this definition are usually known. Thus, the
primary challenge is determining whether such an execution exists,
and if so, how to trigger it. Fortunately, this type of problem has
another name: it is a software model checking (SMC) problem. A
typical SMC problem is to determine whether an error state (such
as an assertion failure) can be reached from the program entry point.
Analogously, a code reuse problem is to determine whether a goal
state can be reached from a vulnerability.

In this section,we demonstrate our proposed techniques inLimbo,
a practical system for automatically discovering defense-aware code
reuse attacks. At a high level, Limbo reduces the problem of finding a
code reuse attack to a SMCproblem,which it solves using executable-
level concolicexecution (Section3.1).Aswedescribe in theremainder
of this section, concolic execution provides a balance between sound-
ness, completeness, and scalability that is well suited for automating
the search for code reuse attacks. Concolic execution allowsLimbo to
take a state and enumerate some of the states that are reachable from
it by executing the program symbolically. Limbo uses this ability to
iteratively compute a set of states that are reachable from the vulner-
ability. As soon as this set contains a goal state,Limbo outputs the dis-
coveredattackasanexecutable test case.The test casecontains inputs
that, when given to the program, will cause it to reach a goal state.

3.1 Background: Concolic Execution

Concolic execution [7, 14, 15] is a combination of concrete and
symbolic execution [27] that can reason about executable code very
precisely. As the name suggests, concolic execution starts with a
concrete (e.g., an ordinary) execution. A symbolic execution then
executes the program symbolically along the same program path as
the concrete execution.

Symbolic execution is similar to concrete execution, except that in-
stead of mapping registers and memory locations to concrete values
such as 42, symbolic execution maps them to symbolic expressions,
which express values in terms of the symbolic input to the program.
Just like algebraic expressions, symbolic expressions can represent
multiple program values depending on the values of the input vari-
ables. For example, the symbolic expression s4 + 8 intuitively rep-
resents eight plus the 4th byte of the symbolic input to the program.

The other major difference is that symbolic execution maintains
a path predicate Π that represents the constraints required to follow
the execution path that has been symbolically executed so far. Π
starts as true, and each time a conditional branch is executed, that
condition is conjoined to Π. For example, if a branch is conditionally
taken when %eax> 42, and %eax currently has the symbolic value
seax , Π would be updated to Π∧seax >42.

Concolic executionuses thevalueofΠ to createnew test cases. For
each conditional branch taken in the followed concrete execution,
concolic execution attempts to flip the branch and produce a new
test case. For example, before encountering the above conditional
branch, concolic execution would use an SMT solver to check if
Π ∧¬(seax >42) is satisfiable. If it is, the resulting model yields a
test case (i.e., program input) that will cause the program to execute

the branch not taken in the concrete execution. If the formula is not
satisfiable, this means that the path is infeasible and cannot be taken.

3.2 Why Concolic Execution?

Concolic execution has been employed for a variety of applications,
but in Limbo, it serves two purposes. The first purpose is to detect
when a goal state is reachable on the current path. As concolic ex-
ecution analyzes a path, it builds the set of constraints Π that are
required for the program to follow the same path. This makes it
very easy to see if any execution on the same path has a particular
property, by querying an SMT constraint solver.

The second and more important purpose is to approximate the
program states that are reachable from the vulnerability. At a high
level, a single concolic execution takes a concrete test case (e.g.,
console, file, or network input) as input, and outputs new test cases
that explore adjacent execution paths. Thus, by running concolic
execution to produce new test cases, and then concolically executing
those test cases, and so on, it is possible to explore the symbolic state
space of the program that is reachable from the original starting test
case (or test cases).

More succinctly, we say that a program state ∆′ is reachable from
state ∆, or ∆{∆′, if there exists a program execution in which ∆
is reached before ∆′. As described above, concolic execution defines
its own reachability relation exec

{ which approximates{. We believe
that concolic execution is well suited for this task because it is sound,
relatively complete, and relatively scalable, as we discuss below.

3.2.1 Soundness. We say exec
{ is sound if ∆ exec

{∆′ implies ∆{∆′, or
less formally, a state is reachable if the analysis says it is. Concolic
execution is based on symbolic execution, which is a sound analy-
sis. As a result, concolic execution can accurately reason about the
executions that are adjacent to the current path. At a high level, this
means that if concolic execution says an execution is reachable, then
it is. Furthermore, concolic execution can also provide the inputs to
an example execution to serve as a validation.

3.2.2 Completeness. Completeness is the converse of soundness.
We say an analysis is complete if ∆{∆′ implies ∆ exec

{∆′, or if a state
is reachable only if the analysis says it is. Concolic execution is not
complete in practice, although it comes close. The primary cause of
incompleteness is when the analysis times out or needs too many
resources.We discuss this problem inmore detail in the next section.

3.2.3 Scalability. Many dynamic analyses, which are analyses that
execute the program, can only reason about one program execution
at a time. Since there is an astronomical number of concrete execu-
tions, this can make finding a particular execution infeasible. On the
other hand, static analyses, which do not execute the program, can
reason about many program executions at once and tend to scale
much better than dynamic analyses. Because static analyses often ab-
stract someof the complexities of binary analysis away, however, this
also means that they often sacrifice precision in favor of scalability.

Concolic execution lies in an interesting middle ground. It is a
dynamic, sound analysis. But it also scales much better than most
dynamic analyses because it reasons about one program path at a
time instead of one program execution at a time.We say it is relatively
scalable because there are still many program paths, and for most
programs, it is not practical to expect to be able to reason about each



one. We address this in Limbo by using a heuristic search strategy
that prioritizes states more likely to lead to a code reuse attack (Sec-
tion 3.4.1). However, even with our heuristics, Limbo fails to find
some attacks, especially those with complex goals (Section 5).

3.3 Searching for Code

Reuse Attacks Using Concolic Execution

In this section, we explain how Limbo leverages concolic execution
to search for code reuse attacks by searching for program executions
from a vulnerability to an attacker’s desired goal state.

3.3.1 Vulnerable Starting State. Since code reuse attacks leverage
an attacker’s control over the program, and different vulnerabilities
yield different types of control, it is important for the user to be able
to specify the starting state that corresponds to the vulnerability
that they are trying to exploit. Limbo allows the user to specify the
vulnerability and its corresponding starting state in three ways.

The primary method is to provide a concrete test case (i.e., a pro-
gram input) that triggers a control flow vulnerability. Limbo will
automatically detect the vulnerability’s starting state by looking for
an indirect jump to a symbolic location that can be directed to an
unmapped address, which indicates the attacker has enough direct
control over the program counter to make the program crash.

The user can also specify a starting state that is a concrete test case
that does not trigger a vulnerability. In this case, Limbowill act as a
regular concolic executor [7] and will explore the state space of the
program to search for a vulnerability. Once it finds a vulnerability, it
will act as if the user provided that vulnerability as its starting point,
and will attempt to reach a goal state from it.

Finally, the user may elect to employ a synthetic buffer overflow
vulnerability. This allows Limbo to look for code reuse attacks in
programs that do not contain known vulnerabilities, and is similar
to most automated ROP tools, which assume the attacker controls
the stack. We use this capability in Section 4.3 to study the relation-
ship between the amount of code available for reuse and Limbo’s
ability to produce code reuse attacks. To simulate a vulnerability,
immediately after __libc_start_main is reached, Limbo calls a
function that reads data from a symbolic file and deliberately uses
it to overflow its stack frame. This enables Limbo to determine the
level of control over the program state that can be achieved by an
ideal stack buffer overflow. The vulnerability is ideal in the sense
that it does not constrain the attacker’s input at all; as long as the
attacker supplies enough bytes, the overflow will be triggered. Of
course, real vulnerabilities do not always have this property.

3.3.2 Goal States. Limbo allows the user to specify goal states by
providing a goal expression, which may reference register and mem-
ory values. A state is a goal state if and only if the goal expression
evaluates to true in that state. For example, if the attacker’s goal is
to set the %eax register to 0xd34db33f, her goal expression might
be %eax == 0xd34db33f. On the other hand, if she wanted to write
0xd34db33f intomemory at address 0x12345678, shemight choose
thegoal conditionM[0x12345678] == 0xd34db33f. Goal conditions
are a simple, flexible, and powerful way to define the attacker’s goal.

Because concolic execution maintains the path predicate Π (Sec-
tion 3.1), which collects the constraints required for an execution to
follow the path of the current program execution, it is easy to check

if any execution reaches a goal. To see if the goal expression expr can
be true, Limbo queries an SMT constraint solver to see if Π∧expr is
satisfiable. If it is, Limbo has found an execution that reaches a goal
state, and will create the corresponding test case.

This declarative approach, in which the attacker describes the
program states which she would like the program to reach, rather
than commands to put the program into the desired state, is different
from the traditional academic approach to code reuse attacks, which
utilize a Turing-complete language [8, 10, 17, 26, 29]. However, in
practice, attackers only use code reuse attacks for relatively simple
goals, such as disabling NX. After disabling NX, the attacker can
then execute shellcode, which is also Turing-complete, and gives
them full control in the context of the hijacked program.We believe
this is simpler and more practical than trying to implement Turing-
complete behavior using code reuse techniques alone (although we
do find that type of work fascinating!)

3.3.3 Exploring Reachable States. Tofind a code reuse attack, Limbo
searches for an execution from a vulnerable starting state ∆ to a goal
state ∆′. Concolic execution represents states symbolically. As a
consequence, each concolic execution state ∆SYM corresponds to one
or more concrete execution states ∆. Reachability is checked with
concolic execution by initializing a queue of pending states with the
vulnerable starting state∆. Limbo then iteratively selects a symbolic
state from the queue of pending states, concolically executes the
selected state, and adds all of its successors to the queue. The check
is complete when the queue contains the goal state, demonstrating
that it is reachable, or is empty.

A very real possibility is that the procedure never terminates,
which can happen for programs that contain an infinite number of
paths. We discuss methods for dealing with this in Section 3.4.1, and
the consequences of this limitation in Section 5.

3.4 Customizing

Concolic Execution for Code Reuse Attacks

Limbo is built on top of the Mayhem binary concolic executor [7].
Limbo uses a version of Mayhem that only supports concolic exe-
cution of 32-bit Linux binaries, and as a result Limbo is limited to
32-bit Linux binaries as well (see Section 5).

In the rest of this section, we describe the changes that we made
to Mayhem to enable it to search for code reuse attacks.

3.4.1 Heuristics. One of the most important changes that we made
toMayhemwas adding a heuristic to encourage exploration of states
more likely to lead to a code reuse attack. Before we created this
heuristic, Limbowould start exploring reachable paths in no delib-
erate order, and more often than not would get “stuck” exploring
complex functions. Limbo still worked, but itwas spending toomuch
of its time in unpromising parts of the code. In response, we created
a heuristic that prioritizes more promising executions.

We wanted to be very careful about howwe created a heuristic,
however. Naturally, one type of heuristic would be to reuse existing
techniques to look for code reuse attacks (e.g., ROP), which would
defeat the purpose of Limbo. Instead, we wanted a general heuristic
for code reuse attacks.

StorageConsiderations Oneof the complicating factors is that
real computers have a finite amount of disk space, and thus can only



store a finite number of states. Our first attempt was simply to use
Breadth First Search (BFS) over sequences of symbolic indirect jump
targets. In other words, Limbowould start by considering each se-
quence of indirect jump targets of length one, followed by sequences
of length two, and so on. Exploring attacks in this order is natural,
as it prefers simpler, shallower executions that are likely to have
fewer constraints and use less processing power. Unfortunately, this
approach uses a lot of disk space. As an example, consider a scenario
in which at least three symbolic indirect jumps are needed to reach a
goal state (which happens in Section 4). BFSwould first exhaustively
explore sequences of length one. Thiswould produce at least asmany
states as there are targets of the indirect jump. There is generally at
least one page worth of targets, or 4096 targets. A Mayhem test case
utilizes about 300 KiB of disk space. After exhaustively exploring
states of depth one, BFS would require 4096 ∗ 300KiB = 1.2GiB of
disk space. After exhaustively exploring depth two, it would need a
whopping 40962∗300KiB=5TiB of disk space to contain all 40962 in-
termediate test cases. Needless to say, available disk space naturally
constrains the order in which states can be explored.

HeuristicPrinciples At ahigh level, our final heuristic is based
on two principles. The first is to prefer states with more symbolic con-
trol. To see why this is helpful, assume that there are two states
available to explore. The first state is completely concrete, but in the
second state all the registers are symbolic. If the goal is to write to
memory, almost any instruction that writes to memory will work
for the symbolic state. For example, mov %eax, (%ebx) could be
used, or even addl %eax, (%ebx) if the prior value in memory was
known. Having symbolic control over registers allows the semantics
of instructions to be reused in very powerful ways. In contrast, the
concrete state is likely to crash when executing those instructions
unless %ebx happens to be a valid pointer.

For this reason, Limbo awards a state +1 point for each symbolic
bit in a register. However, it does not award any points for registers
that are wider than the architecture’s pointer type. For similar rea-
sons, Limbo also awards +1 point for each symbolic memory byte
located in the scratch storage memory area (Section 3.4.2).

The second principle of our heuristic is to prefer a smaller state
space. The rationale behind this is that each indirect jump increases
the amount of state space to explore significantly. Thus, if all else
is equal, it’s better to search a smaller state space first. As a conse-
quence, Limbo “charges” states for each symbolic indirect jump they
execute. The first symbolic indirect jump in an execution is charged
a high price — 3∗n where n is the number of bits in the pointer type.
In other words, when Limbo first starts searching, it will prefer to
explore targets for the first indirect jump until a state is found that
symbolically controls at least three registers. After the first, the cost
for subsequent symbolic indirect jumps drops down to n.

When Is the Heuristic Evaluated? One counter-intuitive as-
pect of the heuristic is that it cannot be evaluated at the time a new
test case is created. For example, if Limbo is exploring the targets of
a symbolic indirect jump, it will produce test cases that trigger execu-
tion of different targets of that jump. Let’s say that Limbo produces a
test case for the jump target 0x12345678, and that this code executes
pop %eax, which allows Limbo to gain symbolic control over %eax.
At the time the test case for 0x12345678 is created, Limbo is not
executing the code at 0x12345678. Instead, it executes the existing
path up to the indirect jump, and ensures that the new test case will

take the indirect jump to 0x12345678. Crucially, Limbo does not
know the effects of executing that code yet. It will not know the
effects of that code until the new test case is concolically executed.
Although it might seem too late at that point, the heuristic is still
useful because %eaxwill remain symbolic in most of the new test
case’s children, and thus they are promising too. We also modify our
heuristic slightly to reflect this delayed reaction. In particular, we
delay the “charge” for an indirect jump until the new code for that
jump is evaluated. Otherwise, we would penalize the test case for
an indirect jump without allowing it to gain symbolic control.

LimitingSymbolicBranches Wehave also foundpruning cer-
tain subtrees of the state space to be helpful, although it introduces
incompleteness (Section 3.2.2). For example, an earlier version of
Limbo often discovered that it could use a function to perform a sym-
bolic write, but some type of safety check would always terminate
the state before it could escape the function. If that functionwas com-
plex, Limbowould generate many seemingly promising states that
took a long time to explore butwhichwould ultimately lead nowhere.

Therefore, Limbo includes the following limits (with default val-
ues in parentheses) to address this concern (also see Section 4.4):

• max-branches: Maximumnumber of symbolic branches since the
last symbolic indirect jump (0)

• max-forks: Maximum number of concolic executor forks since
the last symbolic indirect jump (25)

• max-indjumps: Maximum number of symbolic indirect jumps (3)

3.4.2 Tweaks to Concolic Execution. Mayhem already contained
some level of support for the following binary execution behaviors,
but we modified their behavior in Limbo.

Indirect Jumps Mayhem originally handled symbolic indirect
jumps by creating test cases for each possible target up to a hard-
coded limit. There are two problems with this approach. First, in
vulnerable executions, indirect jumps are often completely uncon-
strained. They can jump to any address (although most of these
targetswould be unmapped and cause a crash). Rather than allowing
these jumps to go anywhere, Limbo allows the user to designate a
set of code modules which symbolic indirect jumps can target. This
effectively sets the code modules from which code will be reused.
By default, Limbo assumes this code module is not randomized. If
it is, the user can either provide the address of the code module
as an argument, or Limbowill produce a non-deterministic attack
(Section 2.3.1).

The second problem is that throwing away targets above the
hard-coded limit is a source of incompleteness (Section 3.2.2), and is
especially bad for code reuse attacks. A codemodule contains at least
a page worth of executable addresses. It is important to be able to
explore all of them.We tried multiple approaches, including just re-
moving the limit. Writing thousands of test cases was slow, and also
tended to fill the disk upwith unpromising executions. The approach
we found to work best is to enumerate targets up to a fixed number
(64), and to produce test cases for each of those targets. We then pro-
duce a “continuation” test case that replays the indirect jump with a
constraint that disallows the previously enumerated targets. When
this other test case is executed, it will produce 64more test cases, and
another “continuation” test case. This will continue until no more
feasible targets exist. As a minor improvement, we also found that



splitting the continuation space in half and producing two continu-
ation test cases worked better to ensure that we never ran out of test
cases. This intentionally causes exponential division of test cases.

SymbolicMemory Another challenging situationoccurswhen
a symbolic address is dereferenced in a memory read or memory
write. By default, Mayhem handles symbolic memory operations by
redirecting them to a memory region so they do not crash. It will
prefer memory regions that are symbolically controlled, which is in
line with our heuristic (Section 3.4.1).

Limbouses a slight variation of this: it tries to redirect all symbolic
memory reads and writes to the same scratch space area. Reading
and writing at the same location provides an opportunity to control
additional program state. For example, if Limbohas symbolic control
of the scratch area, and can symbolically load from the scratch area
into a new register, it will gain symbolic control of that new register.

There are downsides to constraining symbolic memory opera-
tions in this way. Attackers have used symbolic memory loads on
code regions to copy data from one location to another [21]. For ex-
ample, this can be useful when it is not possible to include a specific
character in a payload. Likewise, there could be code that, when
reused, behaves differently depending on values in memory. By not
allowing symbolic memory writes to change these locations, we
could theoretically miss out on some behaviors. Unfortunately, the
cost of considering all possible memory regions is high.We feel that,
by default, the cost of exploring all these extra executions is not
worth the benefit of slightly improving completeness.

4 EVALUATION

In this section, we evaluate how effectively Limbo can discover code
reuse attacks using our state reachability approach.We are specif-
ically interested in addressing the following research questions:

• RQ1:CanLimbodiscovercodereuseattacks inthepresence

of fine-grained CFI? (Section 4.2)

One of Limbo’s advantages over existing work is that it is generic
and thus can find defense-aware attacks without any special
knowledge about a defense. As one of the most popular types
of defenses, we test whether Limbo can identify attacks in the
presence of fine-grained CFI.

• RQ2:HowmuchexecutablecodedoesLimbo require topro-

duce code reuse attacks? (Section 4.3)

Whether because ofASLRor newer defenses such asCFI, attackers
have less code fromwhich to produce modern code reuse attacks.
Thus, it is important to understand the relationship between the
amount of executable code that the attacker can leverage and the
amount of control over the program that this affords the attacker.

• RQ3: How sensitive is Limbo to its heuristics? (Section 4.4)

Limbo employs several heuristics in order to achieve scalability.
We study howmuch these heuristics help, and identify the param-
eter values that have the largest impact.

• RQ4: Can Limbo discover new techniques? (Section 4.5)

Because Limbo searches for code reuse attacks in a very general
way, it can “discover” new techniques to construct code reuse
attacks. We conduct a case study of one such technique.

Name Description
execv Execute a command using execv
s-mem Store an arbitrary byte into an arbitrary address
l-mem Read a byte from an arbitrary address into a register
l-refn Load n registers with pointers to controlled memory
l-regn Load n arbitrary full-width values into registers
l-reg Load an arbitrary full-width value into %reg

Table 1: Goals evaluated by Limbo

4.1 Experiment Setup

Hardware Each experiment is run inside a virtual machine hosted
by a machine with 4 AMDOpteron 6386 SE processors and 256 GiB
of RAM. Each processor has a total of 16 cores for a total of 64 cores
per host. Each virtual machine is assigned 32 vCPUs, 64 GiB of RAM,
and 2 TiB of disk space, and runs Ubuntu Linux 18.04.3. Limbo uses
all 32 vCPUs, but the other tools tested in this section (angrop [3, 31]
and BOPC [18]) are single threaded.

Goals There is no universal goal that makes sense for all at-
tackers and all programs. Instead, an attacker’s goal depends on
both her higher level objectives (e.g., data infiltration, subversion, or
denial of service) and the nature of the program she is attacking. In
this paper, we address this by evaluating a number of fairly generic
goals, such as writing an arbitrary value to an arbitrary location in
memory and executing functions in libc. Some of these goals may
be of direct interest to attackers (e.g., calling system("/bin/sh")).
Others serve as a measurement for howmuch control the attacker
has over the program’s environment.

Table 1 lists each goal and gives a short description. We also de-
scribe each goal in more detail below, starting with one of the most
desirable goals, execv, which allows the attacker to execute an arbi-
trary command. This goal canbe accomplished byfinding an existing
call toexecv in the program, or by computing the address of the func-
tion inside libc using a Global Offset Table (GOT) pointer [25]. For
example, if theGOThas an entry for printf, and the attacker knows
that execv occurs 0x3bf8 bytes after printf, this goalwould ensure
that the goal state jumps to M[GOT] + 0x3bf8. The next two goals,
s-mem and l-mem, represent storing an arbitrary constant byte to an
arbitrary address in memory, and loading a byte from an arbitrary
address in memory to any general purpose register, respectively.
The l-regn goal measures the ability to concurrently set n general
purpose registers to arbitrary full-width values. The l-refn goal
concurrently initializes n general purpose registers with pointers to
arbitrary data controlled by the attacker. Finally, l-reg goals exist
for each general purpose register, and represent the ability to store
an arbitrary full-width value in that register.

4.2 RQ1: Can Limbo discover code reuse

attacks in the presence of fine-grained CFI?

One of Limbo’s advantages is that it is generic and can theoretically
find defense-aware attacks without any special knowledge about a
defense. In this section, we put this theory to the test by evaluating
whether Limbo can find find attacks in one of the most common
defenses, Control Flow Integrity (CFI) [1, 2, 12, 22]. We compare
Limbo’s performance to BOPC, a state-of-the-art tool for identifying



Goals
execv s-mem l-mem l-ref4 l-ref5 l-reg4 l-reg5Program Size

(KiB) Limbo BOPC Limbo BOPC Limbo BOPC Limbo BOPC Limbo BOPC Limbo BOPC Limbo BOPC
orzhttpd 37.9 3,750.4 1.4 23.4 1.4 1.9 1.4 3,750.4 1.4 3,750.4 1.3 31.9 1.8 3,750.4 1.9
nullhttpd 97.2 93.6 1.5 25.6 1.5 2.8 1.5 93.6 1.5 93.6 1.4 33.0 1.5 93.6 1.5
sudo 182.8 160.1 3.6 56.9 3.6 0.2 3.6 276.2 3.8 345.6 3.5 1.7 7.3 1.7 251.9
opensshd 320.7 157.0 5.4 263.4 5.4 7.5 5.4 ∞ 6.8 ∞ 5.2 17.7 6.9 39.9 6.9
wuftpd 404.5 ∞ 8.9 234.3 9.0 2.1 11.7 ∞ 9.8 ∞ 8.6 136.4 23.6 275.1 2,191.8
proftpd 1,306.9 ∞ 26.9 39.0 26.6 0.3 26.5 ∞ 4,291.7 ∞ 25.5 1.8 176.3 14.6 181.6
httpd 1,474.5 1,278.0 28.2 1.8 29.2 0.2 100.3 464.5 3,766.0† ∞ 27.0 12.7 310.9† 12.7 586.0†
nginx 3,351.2 151.5 37.5 16.9 37.7 0.1 57.4† ∞ 417.7 ∞ 35.9 4.2 209.5† ∞ ∞

wireshark 7,638.6 ∞ 67.3 212.5 71.3 28.5 1,174.0 ∞ ∞ ∞ 63.0 314.0 1,597.8 375.3 1,897.7
smbclient 10,378.8 ∞ 179.0 2.3 1,790.8 0.5 1,829.9 ∞ 1,722.3 ∞ 171.6 9.5 3,138.0 ∞ 2,089.3

Table 2: A comparison of the attacks discovered by Limbo and BOPC [18] for the listed programs and goals. CFI is enforced on

both forward- and backward-edges based on the CFG recovered by angr as implemented in BOPC [18]. A red, struck out field

indicates that the tool failed to produce an attack. A yellow
†
field with a cross

†
indicates that BOPC only found attacks that

required either an arbitrary write primitive (AWP) or a pre-initialized register. The duration in minutes is also reported, but

note that BOPC is single threaded. If either tool ran out ofmemory or took longer than 72 hours,∞ is reported instead.

Data Oriented Programming (DOP) attacks [18], which are designed
to operate in the presence of CFI.

We adoptmany of the evaluation parameters fromBOPC’s evalua-
tion [18]. Specifically, we simulate fine-grained CFI on both forward-
and backward-edges based on the CFG recovered by angr [31], and
do not enforce CFI for shared libraries.We also evaluate the same set
of 10 network and systemutilities (such as apache and opensshd), as
these programs are representative targets of code reuse attacks. We
chose to simulate CFI in order to have a fair comparison with BOPC,
which, unlike Limbo, cannot be used with real CFI implementations.

For each program, we ran Limbo and limited it to explore execu-
tions containing no more than three symbolic indirect jumps for 72
hours. Limbo searches for all goals simultaneously. BOPC executes
in two stages,which are both single threaded. In thefirst stage, BOPC
identifies and saves abstractions that represent the behavior of each
basic block in the program. BOPC is then invoked once per goal to
determine if that goal can be met using the saved abstractions. Both
stages of BOPCwere limited to 72 hours.

Table 2 shows the results of this experiment. For each program
and goal tested, we report whether Limbo and BOPC found an attack
for that goal (shown in green), or report that no attack was found
(shown in struck-out red). Times are also reported in minutes for
context. If either tool ran out ofmemory or took longer than 72hours,
∞ is reported instead. In a few cases, BOPCwas able to find an attack,
but only by making assumptions about the attacker’s control over
the environment (shown in yellow†). Specifically, BOPC assumes
that it may use an arbitrary write primitive (AWP) to arbitrarily
write to memory, or that it can initialize registers to arbitrary values.
Since Limbo does not make such assumptions, we modified BOPC
to report when it had to use either assumption to create its attack.

The goals in Table 2 are ordered so that the goals indicating more
control over the program are on the left side, and less control to the
right. We can quickly compare the performance of Limbo and BOPC
by summarizing the outcome of each goal as a record such asW-L-T,
whereW is the number of scenarios in which Limbowon (e.g., was
able toproduceanattackbutBOPCwasnot);L is thenumberof losses
(e.g., BOPC foundanattackbutLimbodidnot); andT is thenumberof
ties (e.g., both systems found an attack). Starting with the most diffi-
cult goal, execv, Limbo has a record of 4-0-0, indicating that it found

attacks for 4 (out of 10) programs, compared to 0 for BOPC. This is
one of the more desirable goals for an attacker, since it allows her
to execute arbitrary commands. Limbo also outperformed BOPC at
memory operations, yielding records of 10-0-0 and 7-0-3 for storing
to and loading frommemory respectively. Both systems struggled to
initialize references to controlled memory, with records of 1-1-1 and
1-0-0 for l-ref4 and l-ref5 respectively. When controlling regis-
ters, both systemsperformed roughly equally.When setting four and
five registers in tandem (l-reg4 and l-reg5), Limbo earned records
of 1-0-9 and 0-2-6 respectively. When setting individual registers in
isolation, Limbo earned a record of 1-0-59 (not shown in Table 2).

We investigated why BOPC failed to produce any attacks for
the s-mem and execv goals. At a high level, BOPC attempts to map
basic blocks to statements in its SPloit Language (SPL) payloads,
which are analogous to what we call goals. For memory writes,
BOPC specifically looks for a block that contains a write akin to
mov %eax, (%ebx) where both registers have not been modified
since the start of the block. It is noteworthy that an instruction such
asmov %eax, 12(%ebx)wouldnotmatch. This strategymakes sense
considering that, unlike Limbo, BOPC’s broader goal is to enable
Turing-complete computation, and in the general case, the value in
a register may be coming from a previous computation and thus not
constant. This designdecision is restrictive, andas these results show,
it rules out many attacks that could otherwise be found. Because
Limbo is designed to be generic, it does not make (explicit) assump-
tions that prevent the discovery of attacks in this way. The trade-off,
however, is that Limbo can only be used to search for attacks that
put the program into a designated goal state; it cannot, for instance,
execute an infinite loop, which is an attack BOPC can search for.
Since the vast majority of code reuse attacks in practice do not need
this ability, we argue that this trade-off is desirable.

Wemademinormodifications tobothLimboandBOPCtoperform
our experiments. To allow Limbo to consider the same CFI policy
(i.e., the set of allowed control flow transitions) as BOPC, we added
functionality that extracts the CFI policy used by BOPC, and simu-
lates a crash in Limbowhenever a disallowed control-flow transition
is taken. In BOPC,wefirst added an option to disable the use of anAr-
bitraryWrite Primitive (AWP) and arbitrary control of registers.1We

1The modified version of BOPC is available at https://github.com/sei-eschwartz/BOPC.

https://github.com/sei-eschwartz/BOPC


Goals
execv s-mem l-mem l-ref4 l-ref5 l-reg4 l-reg5Program Size

(KiB) Limbo angr Limbo angr Limbo Limbo angr Limbo angr Limbo angr Limbo angr
arch 33.5 1,910.8 1.6 13.2 1.6 17.6 13.2 ∞ 13.2 ∞ 12.9 1.6 42.1 1.6
b2sum 73.5 2,902.3 2.5 994.6 2.5 753.7 994.6 ∞ 994.6 ∞ 2.5 2.5 148.9 2.5
bzcat 33.4 240.7 0.9 289.9 0.9 112.2 289.9 ∞ 289.9 ∞ 2.7 0.9 15.5 0.9
chattr 9.4 71.9 0.3 ∞ 0.3 ∞ ∞ ∞ ∞ ∞ 7.3 0.3 25.1 0.3
cut 41.5 252.9 2.0 38.8 2.0 39.9 38.8 ∞ 80.8 ∞ 6.1 2.0 10.2 2.0
dmesg 69.6 646.8 2.6 652.2 2.6 191.2 652.2 ∞ ∞ ∞ 0.4 2.6 1.8 2.6
getopt 13.4 ∞ 0.4 71.7 0.4 75.3 71.6 ∞ ∞ ∞ 23.3 0.4 64.5 0.4
md5sum 45.5 ∞ 2.2 1.8 2.2 622.1 1.8 ∞ 1.8 ∞ 1.8 2.2 1.8 2.2
nawk 127.9 213.1 1.6 213.1 1.6 79.8 213.2 ∞ 279.6 ∞ 3.8 1.6 3.9 1.6
numfmt 65.5 ∞ 2.2 1,575.8 2.1 1,499.8 1,576.9 ∞ 1,584.3 ∞ 0.4 2.1 17.1 2.1
pathchk 33.5 504.6 1.6 6.5 1.6 325.4 6.5 ∞ 77.2 ∞ 6.5 1.6 14.5 1.6
pgrep 25.4 ∞ 0.9 1,571.9 0.9 2,366.5 1,571.9 ∞ 1,571.9 ∞ 3.7 0.9 24.6 0.9
renice 9.4 ∞ 0.4 ∞ 0.4 32.3 ∞ ∞ ∞ ∞ 4.1 0.3 182.8 0.3
sh.distrib 125.7 1,401.1 1.6 150.8 1.6 21.1 150.8 ∞ 150.8 ∞ 0.5 1.6 4.4 1.6
sha512sum 101.5 ∞ 1.6 24.9 1.6 3,263.8 24.9 ∞ 2,838.5 ∞ 24.7 1.6 24.9 1.6
sum 45.5 454.9 2.2 164.4 2.2 523.7 164.4 ∞ 164.4 ∞ 3.4 2.2 3.3 2.2
umount 25.4 ∞ 0.8 ∞ 0.8 104.0 ∞ ∞ ∞ ∞ 0.2 0.7 19.7 0.7
vdir 141.7 401.8 1.7 225.9 1.7 203.1 225.9 ∞ 243.6 ∞ 5.3 1.7 13.3 1.7
xargs 73.5 ∞ 3.4 5.4 3.4 51.7 5.4 ∞ 38.4 ∞ 2.6 3.4 7.5 3.4
zdump 21.4 647.2 1.0 ∞ 1.0 1,897.8 ∞ ∞ ∞ ∞ 0.5 0.8 0.2 0.8

Table 3: A comparison of the attacks discovered by Limbo and angrop [3, 31] for the listed programs and goals using a synthetic

stack buffer overflow vulnerability with only ASLR and NX. A red, struck out field indicates that the tool failed to produce an

attack. The duration in minutes is also reported, but note that angrop is single threaded. If either tool ran out of memory or

took longer than 72 hours,∞ is reported instead.

also added support for x86 executables, so that BOPC could operate
on the same executables as Limbo, which was straight-forward.

The fact that Limbo is able to bypass CFI is not surprising or new;
researchers have documented that CFI does not prevent code reuse
attacks in all programs [17], and that some of these attacks can be
automated [18]. However, what is notable is that we did not imple-
ment any strategy in Limbo for attacking CFI-protected binaries.
Limbo simply tried to follow its directive to reach a goal state. If it
encountered a CFI check that terminated the program because of an
illegal jump, that state could obviously not reach a goal state, and
Limbowould try other executions.

4.3 RQ2:Howmuch executable code does Limbo

require to produce code reuse attacks?

In this section, we examine the relationship between the amount
of code available for reuse and Limbo’s ability to find code reuse
attacks. As we discussed in Section 2.3, advances in two dimensions
have restricted the amount of code available for modern code reuse
attacks. In some cases, ASLR may randomize all but a small amount
of executable code, forcing the attacker to use the unrandomized
code, or determine the address of a randomized codemodule. In other
scenarios, defenses such as CFI may restrict transitions to some code
addresses, effectively limiting the code available to the attacker. As
defenses advance, attackers will have less code available for them to
reuse. Thus, it is important to understand the relationship between
the amount of executable code that the attacker can leverage and the
amount of control over the program that this affords the attacker.

Since the goal of this experiment is to evaluate Limbowhen only
a small amount of executable code is available, we selected test pro-
grams by randomly sampling twenty programs that are installed
by default in the Ubuntu 18.04.3 Docker image. These programs
are small, and thus provide a small amount of executable code for
Limbo to reuse. The smallest and largest programs in our sample

are 9.4 and 141.7 KiB respectively, with a mean and median size of
55.8 and 43.5 KiB respectively. Since these programs do not contain
vulnerabilities that we know of, Limbo uses a synthetic stack buffer
overflow vulnerability (Section 3.3.1). These programs are also all
PIEs (Section 2.3.1), so Limbo assumes the attacker knows where in
memory the executable is loaded.

To compare with existing work, we also tested a popular open-
source tool for automating ROP attacks that is part of the angr binary
analysis framework, angrop [3, 31]. At a high level, angrop uses sym-
bolic analysis to identify gadgets in the target program, and then
combines the gadgets to implement a goal specified by the user. We
tested version 8.20.1.7 of angrop, which was the latest version at the
time of writing. Both Limbo and angrop were allowed to run for 72
hours per program, although angrop is single threaded.

Table3showstheresultsof thisexperiment, andcanbe interpreted
in the sameway as Table 2 in Section 4.2.Wewill also summarize the
resultshereusing theWin-Loss-Tie recordnotation fromthat section.
Starting with the two most difficult goals, execv and s-mem, Limbo
earned records of 12-0-0 and 16-0-0 respectively, indicating that
Limbowas able to construct execv and s-mem attacks for 12 and 16
programs respectively, but angrop did not find any attacks for either
of thesegoals.Limbowasable to loadarbitrarybytes frommemory in
19programs,butangropdoesnot support this typeofgoal.Becauseof
angrop’s inability to write tomemory in these programs, it performs
poorly at l-ref4 and l-ref5 (Limbo earns records of 16-0-0 and 14-
0-0). Both systemswere able to control themajority of registers, with
Limbo earning a record of 0-0-20 for bothl-reg4 andl-reg5, and an
overall record of 2-4-113 across all registers (not shown in Table 3).

Overall, these results suggest that Limbo requires very little code
to be able to construct code reuse attacks. The smallest program that
Limbowas able to attackwas less than 10 KiB. In contrast, we ran an-
grop on a variety of executables from our system and it rarely found
s-mem or jmp-libc attacks in executables smaller than 200 KiB.



GoalsExperiment Heuristics
execv s-mem l-mem l-ref4 l-ref5 l-reg4 l-reg5

Executables protected by CFI
(RQ1/Section 4.2)

Enabled 4 (27,667.3) 10 (876.1) 10 (44.0) 2 (35,301.4) 1 (39,226.4) 10 (562.9) 6 (17,999.7)
Disabled 3 (31,691.6) 9 (5,797.7) 10 (58.9) 2 (35,833.9) 1 (39,616.1) 10 (1,104.4) 5 (22,413.1)

Small Ubuntu executables
(RQ2/Section 4.3)

Enabled 12 (44,209.3) 16 (23,281.5) 19 (16,501.1) 16 (23,282.6) 14 (34,249.9) 20 (112.4) 20 (626.0)
Disabled 4 (71,443.5) 10 (45,275.9) 12 (39,097.8) 10 (45,328.6) 6 (62,851.2) 20 (455.4) 19 (6,265.0)

Table 4: A summary of the code reuse attacks that Limbowas able to find conditioned onwhether all heuristics were enabled or

disabled. For each configuration and goal, the number of programs inwhich an attack for that goal was found is reported (more

is better). The parenthesized number represents the total number ofminutes across all programs spent searching for that goal;

if the goal was not found in a program, the maximum experiment duration is used instead (72 hours). Green values highlight

the better performing configuration, whereas red shows the inferior one. If either configuration ran out of memory or took

longer than 72 hours,∞ is reported instead.

4.4 RQ3:Howsensitive isLimbo to itsheuristics?

Limbo contains several modifications and heuristics that are not
standard in concolic executors (Section 3.4). In this section, we eval-
uate Limbo’s performance while varying these modifications to
understand their contribution to Limbo’s overall results.

First, to broadly understand the implications of ourmodifications,
we replicate the experiments forRQs 1 and 2 (Sections 4.2 and 4.3) but
disable all of Limbo’s heuristics, anduseMayhem’s default heuristics
instead. We do not disable the modifications to symbolic indirect
jumps and memory that are described in Section 3.4.2. These can be
considered the bare minimum changes to allowMayhem to discover
code reuse attacks; without these modifications, Mayhem is unable
to find virtually any code reuse attacks.

Table 4 shows the overall effect of disabling heuristics in the ex-
periments for RQs 1 and 2, and the results differ between the two
experiments. Each row in the table represents a configuration of
Limbo, and the columns represent a goal. Each cell reports the num-
ber of programs in which the corresponding configuration found an
attack for that goal. In parentheses, the time required to find the at-
tacks is reported, with any programmissing an attack counted as the
full experiment duration (72 hours). The first two rows show that for
the RQ1 experiment in Section 4.2, Limbo performed slightly better
with its heuristics enabled. Using theWin-Loss-Tie notation from
Section 4.2, Limbo had a record of 4-1-39 across all goals in the table
compared to the version with heuristics disabled. On the other hand,
the last two rows show that heuristics had a more substantial effect
on the RQ2 experiment in Section 4.3, with a record of 37-1-80 over
all goals in the table. The salient difference between these two experi-
ments iswhether CFI is enabled.We hypothesize that because strong
defenses such as CFI greatly restrict the state space, it is easier for
Limbo to cover a large portion of the state space, and thus the order is
not as important. Without a strong defense, the state space explodes
very rapidly at indirect jumps, and the heuristics play a more impor-
tant role in decidingwhich states are explored given a fixed computa-
tional budget. This also leads us to a counter-intuitive prediction: as
defenses becomes stronger, our techniques will be able to search the
state space for code reuse attacks more thoroughly. Thus, strong de-
fenses counter-intuitively provide some benefit to attackers as well.

As discussed in Section 3.4.1, Limbo’s heuristics depend on three
parameters, max-branches, max-forks, and max-indjumps. To bet-
ter understand the effect of these parameters, we repeatedly ran
the experiment from Section 4.3 while varying these parameters.
Because performing these tests is computationally expensive, we
selected one program that Limbo performed well on, b2sum, and

GoalsConfig.
execv s-mem l-mem l-ref4 l-ref5 l-reg4 l-reg5

mb=0† 1,986.2 63.5 569.4 63.5 1,271.7 1.6 63.5
mb=1 ∞ ∞ ∞ ∞ ∞ 2.6 143.1
mb=2 ∞ ∞ ∞ ∞ ∞ 1.8 143.3
mb=4 ∞ ∞ ∞ ∞ ∞ 3.1 219.1
mf=6 1,962.4 50.7 490.2 50.7 1,156.7 1.6 50.7
mf=12 2,533.4 623.0 395.7 900.3 ∞ 5.0 62.2
mf=25† 1,986.2 63.5 569.4 63.5 1,271.7 1.6 63.5
mf=50 2,264.6 353.1 349.9 1,372.5 ∞ 1.9 76.0
mf=100 2,337.7 428.1 228.4 ∞ ∞ 2.1 113.9
mf=∞ 2,030.0 114.7 751.8 114.7 ∞ 1.9 114.6
mi=1 ∞ ∞ ∞ ∞ ∞ 1.8 26.3
mi=2 ∞ ∞ ∞ ∞ ∞ 1.7 105.0
mi=3† 1,986.2 63.5 569.4 63.5 1,271.7 1.6 63.5
mi=4 ∞ ∞ ∞ ∞ ∞ 1.4 81.9
mi=5 2,003.4 93.9 ∞ 93.9 ∞ 1.9 93.9

Table 5: A comparison of the attacks discovered by Limboun-

der the listed configurations (mb: max-branches, mf:max-forks,
and mi:max-indjumps) using the same experimental config-

uration as Section 4.3. A red, struck out duration indicates

that the configuration failed toproduce anattack. † indicates

a default Limbo configuration. The duration is also reported

inminutes. If Limbo ran out of memory or took longer than

72 hours,∞ is reported instead.

performed all tests on it. The results are not representative, but still
provide insight into the parameters.

Each row in Table 5 represents a configuration where one of
Limbo’s parameters is varied from the default setting: mb=n denotes
max-branches = n, mf=n denotes max-forks = n, and mi=n rep-
resents max-indjumps = n. In these experiments, Limbo clearly
performs best when max-branches = 0, suggesting that explor-
ing alternate branch configurations is not worth the cost. We hy-
pothesize that this is because the opportunity cost for exploring a
branch is often exploring a different indirect jump target, which
can result in a wider variety of code behaviors. Varying max-forks
did not consistently affect the results. We believe this is because
Limbo’s default configuration does not explore symbolic branches,
which is the leading cause of forking. Finally, varyingmax-indjumps
shows the tension between goal complexity and search space.When
max-indjumps ≤ 2, Limbo fails to find more complicated goals such
as execv, s-mem and l-mem. This is likely because there are few (or
no) instruction sequences of that length in the program that can ac-
complish those goals.When max-indjumps is set to 3, it finds attacks
for both execv, s-mem and l-mem. But as max-indjumps is increased
again, it begins to struggle. This is because the number of executions
scales exponentially with the number of indirect jumps. We have



found max-indjumps=3 to be a reasonable balance between being
feasible to search, and long enough to find interesting goals.

4.5 RQ4: Can Limbo discover new techniques?

In this section, we investigate whether Limbo can discover new tech-
niques for constructing code reuse attacks. To answer this question,
we examine in detail an attack that Limbo found in tput (9.6 KiB)
for the s-mem goal. In tput, this goal attempts to write 42 to address
0x804b000. Since Limbo is not constrained to known techniques or
subclasses of code reuse attacks, it is reasonable to expect that it will
use some unusual or novel strategies. Although Limbo can use code
sequences that do not end in a ret instruction, it often uses ret in-
structions since theyare commonandmake it easy to transfer control
from one location to another. This attack uses three such sequences.

Limbo starts its attack by jumping into __libc_csu_init, which
is responsible for invoking constructors on shared libraries. This
function does a lot of extra work, including calling __init, but even-
tually it executes the following assembly code, which allows Limbo
to symbolically control%ebx,%esi,%edi, and%ebpby loading values
from the stack, which Limbo controls.

0x8049a5c: pop %ebx
0x8049a5d: pop %esi
0x8049a5e: pop %edi
0x8049a5f: pop %ebp
0x8049a60: ret

Limbonextuses theret instruction to jumptouse_env@plt, thePro-
cedure Linkage Table (PLT) entry for use_env. PLT entries are stub
functions inserted by the compiler to dynamically resolve symbols
in shared libraries on demand. As expected, jumping into the PLT
entry invokes the dynamic linker, which runs for several hundred
instructions. Eventually, the address of use_env in libtinfo.so is
resolved, and use_env starts to execute.

use_env is a relatively simple function that ends with the follow-
ing instructions:

0xf7fa9285: add $0x16d7b,%ecx
0xf7fa928b: mov 0x4(%esp),%eax
0xf7fa928f: mov -0x1c(%ecx),%edx
0xf7fa9295: mov %al,(%edx)
0xf7fa9297: ret

The second instruction reads a value from the stack, which Limbo
controls, and puts it into %eax, giving Limbo symbolic control over
%eax. This is the primary reason why Limbo called use_env.

Most code reuse attacks avoid reusing code from shared libraries
because their locations are randomized by ASLR (Section 2.3.1). But
Limbo figured out that it can safely reuse code from functions in
shared libraries that are dynamically linked to the binary by calling
the function’s corresponding PLT stub. We believe that this is the
first documented example of a code reuse attack that employs a
gadget in a shared library by calling a PLT stub. We call this reusing
dynamically linked gadgets. This is a good example of how Limbo’s
generic design allows it to discover code reuse attacks that employ
creative means to reach the goal state. In this case, since there was
very little code available in the tput binary, Limbo started using
dynamically linked gadgets.

Last but not least, Limbo returns to a regular gadget in tput:

0x8048f7c: mov %al,0xa4(%ebx)
0x8048f82: add $0x14,%esp
0x8048f85: pop %ebx
0x8048f86: pop %esi
0x8048f87: ret

The first instruction takes the lower eight bits of %eax, which Limbo
just gained control of, and writes them to memory at the address
%ebx + 0xa4. Limbo controls %ebx and sets it to 0x804af5c, since
0x804a5fc + 0xa4 = 0x804b000, the address Limbo is trying to
write to. Finally, Limbo also controls %eax and sets the lower eight
bits to 42, which is what it wanted to write to memory.

After all is said and done, this attack executes 883 instructions
whichwere reused from the tput binary and libtinfo.so, a shared
library used by tput. The fact that Limbo automatically employed
a new strategy (reusing dynamically linked gadgets) shows that the
generic approach that Limbo takes can allow it to find new attacks
and strategies that other automated systems may not find.

5 LIMITATIONS

The goal of our work is to discover any code reuse attack should one
exist, but there are limitations of both our technique and implemen-
tation that can prevent it from doing so.

5.1 Limitations of Concolic Execution

Our technique builds upon concolic execution, which has several
limitations. It can fail because constraints take too much memory
or time to solve, or because it runs out of disk space when trying
to store reachable states. The most fundamental limitation of con-
colic execution, however, is that it is a path-based analysis, and most
programs have too many paths to exhaustively explore. Thus, in
practice, our technique searches for an attack, and as a result, its
effectiveness depends on how tractable this search problem is.

A smaller search space helps make the search problem tractable.
Since the state space tends to explode at symbolic indirect jumps,
Limbo performs best on small programs and programs protected by
defenses suchasCFI,whichboth limit thepossible state transitions at
indirect jumps. The othermajor factor in tractability is goal complex-
ity. Limbo’s heuristics help make the search problemmore tractable
in part by bounding the state space that is searched.As our evaluation
shows (Section 4), many real-world attacks can still be found in the
bounded space. Unfortunately, there aremore complex goals that are
unlikely to be found in this limited search space, such as amulti-stage
computation thatwrites tofivememoryaddresses.Boundingcanalso
prevent us from finding entire classes of attacks, such as COOP [26],
which requires the analysis of loop iterations that Limbo’s default pa-
rameters exclude. In summary, Limboworks best with simple goals
and very restricted code. Interestingly, this is very complementary to
most existing work [18, 28, 34], which tends to perform better when
given fewer restrictions. In the future,we plan to investigate a hybrid
implementation of Limbo that is informed by static gadget discovery
tools such as angrop, BOPC and Q for scalability [18, 28, 34].

5.2 Implementation Limitations

Limbo is limited to analyzing executables that its underlying con-
colic executor, Mayhem [7], supports, which are 32-bit x86 Linux
executables. Our state reachability techniques are not inherently



architecture specific, however. It should bepossible to implement our
techniques on other architectures andwe are currently investigating
the feasibility of porting Limbo to support AMD64 Linux executa-
bles. Because the code available for reuse may vary greatly on other
architectures, we cannot predict how effective our technique will be
at finding attacks in practice. For example, our heuristics may not be
as effective at identifying promising states on another architecture.

Another limitation of Limbo is that it does not find information
leak vulnerabilities on its own. As many systems are now random-
izing all code addresses (Section 2.3.1), this poses an additional chal-
lenge for constructing code reuse attacks. On these systems, the
attacker must either determine the memory layout using an infor-
mation leak vulnerability, or ascertain it by brute forcing all possible
memory layouts. This is true for manual attacks as well.

6 RELATEDWORK

Much of the work related to this paper is about the development of
code reuse attacks and defenses, which we summarized in Section 2.
In this section, we focus on automated techniques for discovering
and reasoning about code reuse attacks.

6.1 Automation of Code Reuse Attacks

There are several existing efforts to automate code reuse attacks.
The earliest systems did not consider defenses beyond ASLR and
NX, and attempted to automate the construction of ROP attacks by
reusing code from large libraries such as libc [24] andmobile support
libraries [19]. Roemer [24] built a system which allowed users to
search for gadgets by issuing patternmatching queries over assembly
code sequences. Kornau [19] also designed a system that identified
gadgets by patterns, but instead of matching syntactic assembly
instructions, his systemmatched patterns to a tree-based semantic
representation. Q [28] was one of the earliest systems to automate
the construction of ROP attacks using much smaller amounts of
binary code. Unlike prior work, it was not based on pattern match-
ing and used software verification techniques to test whether an
instruction sequence implemented a useful semantic action.

Wollgast et al. [34] were the first to develop an automated system
to find defense-aware code reuse attacks. Specifically, their system
can produce code reuse attacks in the presence of coarse-grainedCFI
(Section 2.3.2) by automating the Call Oriented Programming (COP)
technique that was proposed previously [6, 10, 16]. The basic idea of
COP is to utilize call-site gadgets, which immediately follow a call
instruction, and entry-point gadgets, which occur at the entry point
of a function, since these gadgets are permitted by coarse-grained
CFI. The actualmechanism to identify and combine gadgets is similar
to the one used in Q [28].

BOPC [18] is a system to automate the construction of code reuse
attacks that are aware of fine-grained CFI. BOPC programs are writ-
ten in the SPL language. BOPC first identifies functional blocks,
which are basic blocks in the target binary that can implement the
behavior described in one of the SPL statements. Functional blocks
are then connected by assigning dispatcher blocks, which is an NP-
hard problem.

All of these systems can automatically discover code reuse attacks.
However, unlike Limbo, they are not generic. Instead, they each au-
tomate a fixed strategy that was already known. For example, the

system fromWollgast et al. can only find COP attacks, which bypass
coarse-grained CFI, and BOPC only automates DOP attacks, which
are aware of fine-grained CFI.

6.2 Evaluation of Code Reuse Defenses

Newton [33] is a tool for evaluating the effectiveness of code reuse
defenses such as CFI. Like Limbo, Newton infers information about
the possibility of code reuse attacks by leveraging dynamic binary
analysis. Newton analyzes a single execution of the target program
and outputs a list of gadgets that it believes are callable by the at-
tacker. It contains a built-in language for defining constraints which
allows it to model both static and dynamic defenses. Newton’s au-
thors employed Newton to count the number of gadgets that were
accessible in several programs under various defenses, which serves
as a metric for how effective those defenses are. They were able to
use this output to manually construct attacks on nginx that would
function with some of the strongest defenses available.

There aremany differences betweenNewton and Limbo, however.
First, Limbo is an automated tool that produces code reuse attacks.
Newton can provide its user with information that will no doubt be
helpful to construct a code reuse attack, but it cannot do so itself.
Second, Limbo uses concolic execution, and Newton employs taint
analysis. Taint analysis can be thought of as a simplified version of
symbolic execution. Instead of representing each program location
symbolically (e.g., %eax contains s4 + 8), it keeps track of which
program locations are tainted by the attacker’s symbolic input to
the program (e.g., %eax is affected by s4). More importantly, taint
analysis can only reason about the current execution path; unlike
concolic execution, it cannot explore adjacent paths. Thismeans that
if a gadget was only accessible via a different path, Newton would
not detect it, unlike Limbo. Nevertheless, we believe that Newton
was the first system to reason about multiple code reuse defenses,
even though it requires explicit models of those defenses.

7 CONCLUSION

In this paper, we proposed a generic framework for automatically
identifying defense-aware code reuse attacks. Unlike existing work,
which utilizes hard-coded strategies for specific defenses, our frame-
work can produce attacks for multiple defenses by analyzing the
runtime behavior of the defense. We implemented our framework
in a tool called Limbo by making a small number of modifications
to an existing binary concolic executor. We evaluated Limbo and
demonstrated that it excels when there is little code available for
reuse, making it complementary to existing techniques. We showed
that, in such scenarios, Limbo outperforms state-of-the-art tools
for both automatically identifying DOP attacks in the presence of
fine-grained CFI, and automatically producing ROP attacks.
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