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Abstract. Decompilers are tools that reverse the process of compilation, 
converting executable binaries into a high-level language like C. They are 
useful in situations where the original source code is unavailable, such 
as when analyzing malware, doing vulnerability research, and patching 
legacy software. Unfortunately, decompilation is necessarily incomplete, 
because the compiler discards many of the abstractions that make source 
code readable, like identifier names and types. A large body of existing 
work uses machine learning to predict missing names, types, and other 
abstractions in decompiled code. However, little of this work consid-
ers obfuscations: semantics-preserving transformations that obscure the 
functionality and design of a program. At the same time, obfuscations 
are common in practice, especially in malware. In this work, we per-
form a quantitative analysis of the impact that obfuscations have on 
decompiled code. Further, we investigate the degree to which training 
on obfuscated code mitigates the impact of obfuscations. We perform 
our experiments on three different models from the literature: DIRTY, 
HexT5, and VarBERT. We find that obfuscations do negatively impact 
machine learning models, but training on obfuscations can partially help 
recover lost accuracy. 

Keywords: Decompilation · Reverse Engineering · Machine Learning 

1 Introduction 

A decompiler is a tool that reverses the process of compilation, converting exe-
cutable binary programs into a high level language such as C. Decompilers are 
useful for a variety of security related tasks, including malware analysis, vul-
nerability research, and patching legacy software [ 37, 38]. Source code is a dual-
channel medium, containing a formal channel that specifies execution semantics, 
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and a natural language channel that communicates information to developers 
who read and write the code [ 5]. 

Fig. 1. Decompiled code is harder to read than original source code. 

Computers, however, only require the formal channel, and so compilers dis-
card the abstractions in the natural channel during compilation. As a result, 
traditional decompilers struggle to recover many of the natural abstractions that 
make source code readable, such as variable names, types, comments, and some 
aspects of code structure [ 12]. This makes reverse engineering slow and painstak-
ing [ 37, 38]. 

To make matters worse, some targets of decompilation—especially malware— 
are intentionally obfuscated : they are transformed to obscure the functionality 
and design of a program (in other words, making it more difficult to compre-
hend) without changing the program’s behavior. Figure 1a shows a simple func-
tion, and Fig. 1b shows the function after being compiled and then decompiled. 
Figure 2a –2d show the same function after applying an obfuscation, compilation, 
and decompilation. For instance, in Fig. 2a, the string literal "/proc/self/exe", 
which provides a key clue to what the function does, has been replaced with a 
sequence of operations on a collection of variables that obscure the content of 
the string. In Fig. 2c, control flow has been completely restructured so that it 
is difficult to tell what statements are executed in what order. As these exam-
ples demonstrate, decompilers typically do not undo obfuscations; they simply 
propagate the obfuscation from the binary level to the source level. 

Recently, researchers have turned to machine learning models to probabilisti-
cally predict missing abstractions in decompiled code [ 2, 6, 21, 26, 32, 41, 43], such 
as variable names and types. These techniques are based on the principle that 
software is natural, or predictable given context [ 17]. For example, it is possi-
ble to predict a variable’s name based on how it is used. These models take as 
input an executable or a representation of the executable that can be determin-
istically derived from it—such as disassembly or the output of a deterministic 
decompiler—and output one or more natural-channel abstractions. We collec-
tively refer to these as decompilation improvement tasks.
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Fig. 2. Figure 1a, obfuscated in different ways, then decompiled. The obfuscated ver-
sions are more difficult to read than without obfuscations Fig. 1b. Function names are 
normalized to <func>, as is the  convention  in  HexT5  [  41].
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In this paper, we analyze the impact that obfuscations have on the accuracy 
of decompilation-improvement machine-learning models. Further, we quantify 
the impact that training on obfuscated code has on a model’s ability to handle 
obfuscations. While obfuscation is commonly employed by malware in practice, 
virtually no existing work in ML-based decompilation improvement considers 
obfuscations in training or evaluation. This is concerning because obfuscation 
undermines the naturalness assumption on which these techniques are based. 
By its nature, obfuscation changes the context under which variable names, 
types, and other abstractions occur. For instance, on Fig. 1a, line 6, the size of 
the buffer is decremented by 1 to accommodate the null terminator that must 
be present at the end of all C strings. Decrementing a string’s length for the 
null terminator is common in C. In contrast, subtracting 0x3EBD892878945E8 and 
adding 0x3EBD892878945E7, as occurs under the instruction substitution obfus-
cation in Fig. 2b, while semantically equivalent, is syntactically unusual; it is 
not what would normally be predicted given the surrounding context, and thus 
can be considered  unnatural. We expect that this should undermine machine-
learning-based tools whose models are only “familiar with” unobfuscated code. 
However, it may also be possible to learn a model that is robust to the presence 
of obfuscations by training on those obfuscations, making the obfuscations an 
expected, or at least not unexpected, part of the context. 

In this paper, we answer four research questions: 

1. How much does the presence of obfuscations impact the accuracy of ML-based 
decompilation improvement models? 

2. How difficult is decompilation improvement under each type of obfuscation? 
3. How well does learning transfer from one type of obfuscation to another? 
4. How does varying the amount of obfuscata in training affect model perfor-

mance? 

In particular, we perform our experiments on three models covering three 
different decompilation improvement tasks: DIRTY [ 6], a model that predicts 
variable names and types, VarBERT [ 32], a model which only predicts variable 
names, and HexT5 [ 41], a language model which can solve a variety of tasks, but 
which we use to predict variable and function names. We answer our research 
questions by performing a series of experiments in which we train and evaluate 
machine learning models on unobfuscated and obfuscated code from a novel, 
large-scale dataset of obfuscated and unobfuscated executable binaries. 

In short, we contribute: 

– Four experiments answering our research questions involving 30 trained 
machine learning models which quantify the impact that obfuscations have 
on machine-learning-based decompilation improvement. 

– A tool for building datasets including obfuscations at scale. 
– A novel dataset consisting of unobfuscated and obfuscated binaries, with up 

to four obfuscations per binary. 

We make available the code and data used in our experiments.

https://github.com/squaresLab/ML-Decompilation-Obfuscation
https://doi.org/10.5281/zenodo.15212423
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2 Research Questions and Findings 

Our high level research goal is to understand and mitigate the effect of inten-
tional software obfuscation on decompilation improvement models. In machine 
learning parlance, unobfuscated code and obfuscated code represent different 
distributions. Using a neural model trained on unobfuscated code to decompile 
obfuscated code represents a covariate shift [ 33]. Note that naturalness [ 17] is  
defined with respect to a distribution, because what is “natural” is context depen-
dent: a natural-sounding sentence in American English may sound unnatural in 
British English. Meanwhile, some distributions may be closer to each other than 
others, i.e., two English dialects may be closer to one another than either is to 
Spanish. Here, different obfuscations may transform code in similar ways, and 
distributions for code obfuscated by these obfuscations might be closer to one 
another than they are to that of a dissimilar obfuscation. While it is difficult to 
measure the distances between distributions directly, we can instead indirectly 
measure it by quantifying the performance of a model trained on one distribu-
tion when evaluated on another. This idea underlies our high-level approach: 
we train and evaluate models on different code distributions, represented by dif-
ferent obfuscations, to understand their impact on decompilation improvement 
models. 

In RQ1, (Sect. 5.1), we ask “How much does the presence of obfuscations 
impact the accuracy of decompilation improvement models? ” To answer this ques-
tion, we measure the performance of models of unobfuscated and obfuscated code 
both with and without covariate shift. We do find empirical evidence of a covari-
ate shift that harms the performance of the three models. In particular, training 
solely on unobfuscated code, as virtually all decompilation improvement models 
do today, leads to poorer performance on obfuscated code, which is found in 
many real-world reverse-engineering scenarios. Fortunately, training on obfus-
cated code alleviates most or all of the impact by eliminating the covariate shift. 

Code obfuscated in different ways may represent different distributions. In 
RQ1, we trained the obfuscated-code model to learn a combined distribution of 
all obfuscations. But some obfuscations’ individual distributions may be farther 
away from the distribution of unobfuscated code than others, leading to poorer 
performance. Driven by this intuition, in RQ2 (Sect. 5.2), we ask “How difficult 
is decompilation improvement under each type of obfuscation? ” We find that 
control flow flattening is the most difficult obfuscation for a model trained on 
unobfuscated code. 

In RQ3 (Sect. 5.3), we further quantify the differences between individual 
obfuscation’s distributions. We ask “How well does learning transfer from one 
type of obfuscation to another? ” It is possible that the distributions for obfusca-
tions that are similar are close to one another, and that training on one obfus-
cation means the performance on a related one may be relatively good. In other 
words, the learning transfers well between the two obfuscations. Unfortunately, 
we find that learning usually transfers poorly amongst the different obfuscations 
in our dataset. These results imply that models may perform poorly in practice 
when they encounter a new obfuscation.
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If in-distribution data is required to learn obfuscations, then a natural ques-
tion is how much data is required? In RQ4 (Sect. 5.4), we ask “How does varying 
the amount of obfuscated data in training affect model performance? ” Neural net-
works require a large amount of data to be fit well; for novel obfuscations, there 
will likely be little data available. However, all decompiled C code—obfuscated 
or not—is similar in many ways: it obeys the same syntactic rules, and the 
semantics assigned to that syntax is the same. This suggests that there are at 
least some common parts of code, regardless of obfuscation, that can be used to 
at least partially inform predictions on unseen obfuscations, though our results 
from RQ3 suggest that at least some data of a particular obfuscation is required 
for good performance on that obfuscation. This is reminiscent of the popular 
pretrain/finetune paradigm in machine learning, where a model is (pre)trained 
on one task for which there is much data, and then trained a little more (fine-
tuned) on data for a related task. To answer RQ4, then, we start by building 
a dataset of unobfuscated code, the purpose of which is to provide the model 
with information about the syntax and semantics of C code. Then we vary the 
amount of obfuscated code, measuring model performance for several different 
base-2 orders of magnitude sizes. Model performance gains increase rapidly after 
the first obfuscated data are added, but drop off rapidly as more are added. This 
suggests that large performance gains on obfuscated code requires a substantial 
amount of obfuscated data. 

3 Datasets 

Fig. 3. An overview of our approach. We download open-source software from GitHub, 
then compile each project five times: once without obfuscations, once with each of 
our four obfuscations. In doing so, we ensure that each executable is compiled using 
debug information. Next, we use IDA Pro’s decompiler through DIRTY’s [ 6] dataset 
generation scripts to produce labeled training data. Finally, we select and preprocess 
data, building datasets to answer each research question. 

To answer our research questions, we needed a large collection of obfuscated 
binaries compiled with debug information. An overview of our approach for con-
structing datasets with respect to the desired experiments is shown in Fig. 3. 
We generated training data by cloning and compiling a large collection of open-
source software, in line with prior work [ 2, 6, 9, 18, 24, 26, 31, 32, 41]. In particular,
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we targeted majority C-language repositories, though these may occasionally 
contain a minority of C++. We collected data from 19,552 such repositories. 
Unlike in prior work, however, we compiled each project five times: once with no 
obfuscations applied, then once with each of four obfuscations. To do this, we 
adapted the GitHub Cloner and Compiler (GHCC) tool [ 20]. GHCC automati-
cally clones and compiles a given list of GitHub repositories, first by executing 
configuration scripts if they exist, then executing each Makefile found in the 
project. Our adapted tool, GHCC-Obfuscator, first clones, then compiles the 
repository without any obfuscations using the repository’s original Makefile(s). 
It then repeats the process, applying one obfuscation at a time, resetting the 
repository to a freshly-cloned state in between. In performing each compilation, 
GHCC-Obfuscator intercepted the calls to the compiler and added the -g flag 
for debug information to each compilation command. This feature was also used 
to add obfuscation-specific flags as necessary. This process produces 8,081,059 
unique binaries, from which we sampled to build the datasets in the experiments. 

With the binaries compiled, we used DIRTY [ 6]’s dataset generation scripts 
to extract labeled data from the binaries compiled with debug information. Each 
binary is decompiled using IDA Pro in batch mode. Because the binaries contains 
debug information, its developer-provided identifier names and types are present 
in the decompiled code. Next, the binaries are stripped of debug symbols. The 
binaries are decompiled again, and this time they are missing developer-provided 
names and types. The two decompilations form input-output pairs for supervised 
training: the second decompilation is the input, and the first, the output. Off-
sets within the binary are used to map the variables in the decompiled code 
and original code together. The obfuscations we use preserve debug information, 
making it possible to establish ground truth in this way for them as well. Obfus-
cations make the functions larger on average, 297 as opposed for 249 tokens for 
unobfuscated code. 

3.1 Obfuscations 

We chose a diverse collection of obfuscations that modify the code in a variety 
of  ways. We describe each below.  

String Obfuscation with ADVobfuscator. ADVobfuscator [ 1] is a library of 
C++ header files with macros that are applied by modifying the source code. In 
particular, used it to obfuscate string literals found in the source code. Obfus-
cated strings are either encoded as an integer or as another string which is 
transformed by a series of operations into the original string. See Fig. 2a for an 
example of ADVobfuscator applied to a function. Since ADVobfuscator depends 
on C++ macros, we compiled any programs obfuscated with ADVobfuscator 
using the C++ compiler g++ (as opposed to gcc). ADVobfuscator only pro-
duced obfuscated binaries when the C files were compiled with at least an O1 
optimization level. (For consistency, we also compiled all other binaries in the 
experiments at O1 as well). Prior work has shown that optimization levels have
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a small-to-negligible impact on model performance of at most a few percentage 
points [ 6, 32], likely because the deterministic decompiler undoes the optimiza-
tions when generating decompiled code. We abbreviate string obfuscation as str 
when presenting results elsewhere in the remainder of this paper. 

Prior work has shown that string literals are a helpful feature of code for 
DIRE [ 13], the predecessor of DIRTY, which predicts variable names in decom-
piled code (but not types). It seems likely that this is a consequence of how 
language models (such as transformers) represent text. To input code to a lan-
guage model, the input is split into a sequence of discrete tokens, each of which 
maps to a learned vector that encodes the semantics of that token. In general, 
there are more tokens allocated to natural language words and subwords then 
there are to C-language syntatic symbols like *, (, and  { . As a result, natural 
language words carry an inflated importance in helping models reason about 
code; misleading natural language can substantially confuse even powerful mod-
els, even when the syntax is otherwise identical, as Miceli-Barone et al. show with 
identifier names [ 30]. Because identifier names are discarded during compilation, 
string literals are one of the sole sources of natural language in non-obfuscated 
decompiled code. 

Obfuscator-LLVM Compile-Time Obfuscations. Obfuscator-LLVM [ 22] 
is a compile-time obfuscation tool based on LLVM that includes three different 
forms of obfuscation: instruction substitution (abbreviated sub), control flow 
flattening (fla), and bogus control flow (bcf). 

Instruction substitution (sub) replaces arithmetic and binary operations on 
integers with a more complicated—but equivalent—series of operations. For 
example, this process may introduce random numbers into computations which 
cancel out because of mathematical identities. Figure 2b shows an example of a 
function obfuscated with instruction substitution. 

Control flow flattening (fla) [  27, 39] is a form of obfuscation that implements 
control flow without using the traditional control structures of a programming 
language. Specifically, it creates a new control variable that represents which 
block should be executed next, and transforms each function’s control flow into 
a loop that uses conditional statements to dispatch to the code that corresponds 
to the current value of the control variable. Each conditional statement body 
represents a basic block from the original, unobfuscated version of the code. The 
value of the variable determines which conditional statement body is executed; 
at the end of each statement body, the control variable is reset such that control 
flow mimics that of the original function. Figure 2c shows an example a function 
obfuscated with control flow flattening. 

The bogus control flow (bcf) obfuscation inserts additional conditional state-
ments with complex, opaque predicates that ultimately end up having no impact 
on the dynamic control flow of a program. In doing so, bcf introduces many irrel-
evant lines of code into the function. Figure 2d shows an example of a function 
obfuscated with bogus control flow.
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To apply Obfuscator-LLVM to our dataset, we built the code using its original 
Makefiles, but forced the Obfuscator-LLVM version of the clang compiler to be 
used and specified the obfuscation’s compiler flag. 

3.2 Dataset Preprocessing 

A particularly difficult problem in dataset preparation for decompilation-based 
models is data leakage. Machine learning models have the tendency to “mem-
orize” their training data; they perform unrealistically well when evaluated on 
their training data. Data leakage occurs when a model is evaluated on data on 
which it was trained [ 23]. Duplicate copies of software projects can often result 
in data leakage when one is added to the training set and others are added to the 
evaluation (test) set. Because duplicate copies (e.g. forks) of software projects 
are extremely common on open-source hosting services like GitHub [ 34], careful 
attention must be paid to data leakage. Identifying duplicate repositories is a 
difficult problem, which in turn makes data leakage hard to prevent. We use the 
following measures to prevent data leakage: 

– By-project splitting : All three models operate at the function level. Putting 
some functions from a given project in the training set and others in the 
test set allows for the leakage of project-specific details. As a result, data 
from each project are placed exclusively in either the training set or test set. 
Xiong et al. [ 41] evaluate both with and without by-project splitting; by-
project splitting causes the accuracy to decrease by more than two thirds, 
highlighting the importance of this data leakage prevention strategy. 

– MinHashing [ 4]: This is a technique for efficiently approximating the Jaccard 
similarity between words or sequences of words in documents. Here, we treat 
all of the C code in a software project as a"document." MinHashing is often 
used with locality-sensitive hashing (LSH) to group similar documents into 
“buckets”; we consider software projects that end up in the same “buckets” 
to be duplicates. We ensure that each project on which we evaluate is not a 
duplicate of any project in the training set. The Stack [ 25], a popular dataset 
of source code for training machine learning models, also uses minhashing 
with LSH for deduplication. 

– Binary Hashing : Following Chen et al. [ 6], we hash each executable file pro-
duced by the model and ensure that models with the same binary hash do 
not end up in both the train and the test sets. 

We control for dataset composition for each model across each experiment; 
that is, for each trial in each experiment, all three models are trained on the 
same datasets. To ensure that this is the case, we perform dataset preprocessing 
and splitting once (using a modified version of the DIRTY dataset preprocessor) 
then convert the prepared train and test sets into formats suitable for VarBERT 
and HexT5.
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4 Models  

Here, we describe the three different model types on which we perform experi-
ments and reproduce the relevant experiments from the original papers, though 
on our dataset, to establish a baseline. 

4.1 Architecture and Training Practices 

We perform all of our experiments on three different models: DIRTY [ 6], Var-
BERT [ 32], and HexT5 [ 41]. 

DIRTY [ 6] is a decompilation improvement model with a transformer-based 
encoder-decoder architecture [ 36] that predicts variable names and types in 
decompiled C code. DIRTY models are trained from scratch (that is, from ran-
domly initialized parameters). 

VarBERT [ 32] is a decompilation improvement model based on a transformer 
encoder that predicts variable names in decompiled C code. VarBERT is pre-
trained on both a masked language modeling objective [ 10] and a constrained 
masked-language-modeling objective, before being trained on variable-name-
prediction data, in line with Gu et al. [ 15]. We make use of the pretrained check-
points provided by the authors, but fine-tune on our own variable-prediction 
data. 

HexT5 [ 41] is emblematic of the modern trend of representation learning in 
natural language processing, whereby large neural networks, often transformer-
architecture sequence-to-sequence models, are trained to predict parts of a 
sequence that are artificially hidden from the model. HexT5 is pretrained to 
learn representations of source code, decompiled code, assembly code, and inter-
mediate representations. The authors evaluate it on four different tasks: sum-
marization, function name prediction, variable name prediction, and code sim-
ilarity. We evaluate only on the function name and variable name prediction 
tasks because our dataset does not have an oracle for textual summaries or code 
similarity. 

Note that the choice of model is orthogonal to our research questions. 
While it is possible that obfuscations may affect different models in different 
ways, in general, we have reason to believe our findings are likely to generalize 
beyond the three models we evaluate here. First, like DIRTY, VarBERT, and 
HexT5, virtually all modern decompilation improvement models are transformer-
architecture models [ 2, 6, 18, 19, 24, 31, 32, 41]. Further, they are almost invariably 
trained on large corpora of open source code downloaded from internet repos-
itories [ 2, 6, 9, 18, 24, 26, 31, 32, 41]. Finally, theory predicts that a covariate shift 
is expected to decrease the performance of any machine learning model, inde-
pendent of architecture, so the trends in performance degredation (if not their 
magnitude) should generalize widely.
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4.2 Baseline 

Fig. 4. Baseline performance numbers taken from the original papers for the three 
models compared with performance when trained and evaluated on our dataset. DIRT 
was the dataset originally used to train DIRTY; VarCorpus was originally used to train 
VarBERT, and NSP was the dataset used to train HexT5. All values are in percent 
accuracy. 

To set a baseline, we reproduce results from the original DIRTY [ 6], Var-
BERT [ 32] and  HexT5 [  41] papers, but using our dataset. That is, we train and 
evaluate them on a subset of the full dataset consisting only of unobfuscated 
code. 

In all cases, the scores we obtain in our reproduction are lower than the 
original works, sometimes significantly. Because machine learning is a “black box” 
method, it is difficult to conclusively determine the cause for the difference. We 
suspect it is due to our data-leakage-prevention measures outlined in Sect. 3.2; 
with less data leakage; there are fewer examples in the test set which the trained 
models have memorized. 

DIRTY is a variable name and type prediction model. We report three met-
rics, as shown in Fig. 4a: the percentage of correctly predicted variable names, 
the percentage of correctly predicted variable types, and the percentage of cor-
rectly predicted types that are structs in the original code. Structures make up 
a minority of variables’ types in source code yet are often more important for 
understanding the functionality of code than primitive types. 

VarBERT is a variable name prediction model. We use their IDA-O1 accuracy 
number because we use the IDA Pro decompiler at optimization level O1, as 
discussed in Sect. 3. The results are shown in Fig. 4b. 

HexT5 is a language model fine-tuned on several tasks; we use it for variable 
name and function name prediction here. The results are shown in Fig. 4c 1.

1 The HexT5 results reported here are imprecise estimates based on information in 
a bar graph in the paper; exact numbers are not provided. The original HexT5 
paper reports function name prediction efficacy in terms of precision and recall. (We 
reached out to the authors for exact numbers but did not hear back). 



The Impact of Obfuscations on ML-Based Decompilation Improvement 255

5 Experiments 

We evaluated the effect of introducing obfuscations to the decompilation problem 
over four separate experiments. For each of these experiments, we constructed 
several different datasets which we used to train DIRTY [ 6], VarBERT [ 32], and 
HexT5 [ 41] models. We performed model training and evaluation on NVIDIA 
A100 and Titan X (Pascal) GPUs and other tasks on 64-bit Linux with Intel 
Xenon CPUs. All three models are implemented as python programs using the 
pytorch library. For DIRTY and VarBERT, we used the dataset preprocessing, 
training, and evaluation scripts and environment files provided by the authors. 
For HexT5, these were not released, so we wrote our own, available in the repli-
cation package, using the transformers API [ 40]. For each model in each exper-
iment, we selected training data (in compiled binary form) according to the 
experiment’s aims, then ran DIRTY’s decompilation and preprocessing scripts. 
We converted this data into the formats required by HexT5 and VarBERT, then 
ran the corresponding model-specific preprocessing scripts. With the datasets 
prepared, we train each model. We dedicated the bulk of the data to training 
but ensured that each test set, derived using the same process, contained at least 
5000 examples that are drawn from repositories that do not overlap the training 
set. We evaluate each model with each test set as dictated by the experiments’ 
goals. 

5.1 RQ1: How much does the Presence of Obfuscations Impact 
the Accuracy of Decompilation Improvement Models? 

Table 1. RQ1: Impact of Obfuscations on Accuracy. Results displayed in terms of 
percent accuracy, along with a relative percent change compared with the baseline 
(first row). Higher is better. 

Train Test 

DIRTY VarBERT HexT5 

Retyping Renaming 

overall structs variables variables variables functions 

Unobf Unobf54.5 – 48.8 – 27.7 – 28.7 – 25.2 – 30.6 – 
Unobf Obf 51.7 (-5.1%) 44.1 (-9.6%) 21.0 (-24.0%)20.6 (-28.4%)23.2 (-8.0%) 26.8 (-12.3%) 
Obf Obf 56.2 (+3.3%) 46.3 (-5.2%) 27.8 (+0.3%) 25.8 (-10.1%)27.0 (+6.9%) 29.0 (-5.3%) 
Obf Unobf50.1 (-8.1%) 44.6 (-8.5%) 24.9 (-10.1%)23.8 (-17.1%)22.3 (-11.8%)28.5 (-6.9%) 

In our first experiment, we investigate the impact that obfuscations have 
on the performance of the three model types, and to what degree training on 
obfuscated data can mitigate the impact of obfuscations. 
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Methodology. We use our reproductions of the three models from Sect. 4.2 as 
a baseline against which we evaluate the impact of obfuscations. We reuse the 
dataset from the reproduction, but also build a dataset of obfuscated code of 
the same size. To provide an additional control, we attempt to use data from the 
same projects as in the reproduction where possible. (This may not be possible 
if the project failed to build with obfuscations applied.) Because we compile 
each repository with four different obfuscations, including all obfuscated data 
would result in a training set that is several times larger than the unobfuscated 
training set. To control for training set size, instead, we select an obfuscation 
uniformly at random and use data from that obfuscation, up to the amount used 
in the unobfuscated training set. If there is insufficient data (perhaps due to an 
early compilation failure on that obfuscation), we continue sampling from other 
obfuscations. The final sizes of the unobfuscated and obfuscated training sets 
are 1,627,991 and 1,578,083 functions, respectively. We train each type of model 
using the obfuscated dataset. Finally, we evaluate each model trained on the 
unobfuscated and obfuscated training sets against both of the unobfuscated and 
obfuscated test sets, leading to a total of four different combinations. 

Results. The results are shown in Table 1. The first row contains our base-
line reproductions. The second row represents what happens when these same 
models—trained only on unobfuscated code—are exposed to obfuscations in eval-
uation. This simulates what would happen if these models, as released, were 
applied to obfuscated code, as is commonly found in practice. In all cases, the 
accuracy drops, but the magnitude of the drop varies considerably. The relative 
drop in accuracy varies between 5.1% for overall retyping with DIRTY and 28.4% 
for variable renaming with VarBERT. However, training on obfuscations can help 
mitigate the loss in accuracy. The third row of Table 1 illustrates this. Training 
on obfuscated code substantially improves prediction accuracy on obfuscated 
code. However, there is no free lunch: a model trained solely on obfuscated code 
performs worse evaluated on unobfuscated code (row 4) than a model trained  
on unobfuscated code. This is perhaps because unobfuscated code is not “natu-
ral” from the perspective of an obfuscated-code-only model; unobfuscated code 
represents a covariate shift with respect to a model trained on obfuscated code. 

Answer to RQ1: Training a model on unobfuscated code leads to 
poor performance on obfuscated code, but training on obfuscated 
code can mitigate the performance loss, at the cost of poorer perfor-
mance on unobfscated code. 
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5.2 RQ2: How Difficult is Decompilation Improvement Under Each 
Type of Obfuscation? 

Some obfuscations may create a more challenging context than others for name 
and type prediction. In this experiment, we benchmark the difficulty of each 
obfuscation. 

Methodology. For this experiment, we used the baseline model trained on 
unobfuscated code from Sect. 4.2. The model was then tested on 4 disjoint sub-
sets of the obfuscated test set from RQ1 (Sect. 5.1), where each subset contained 
binaries with a particular obfuscation applied. In partitioning the test set, we 
excluded examples that appeared under multiple obfuscations. This happens for 
simple functions where the obfuscations do not apply or where obfuscations fail 
(the latter primarily in the dataset’s C++ minority). Excluding simple functions 
has the effect of making the task slightly more challenging; filtering C++ has 
the effect of increasing the difficulty of the struct-prediction task in particu-
lar because structs are more common in C++ code, including easier-to-predict 
standard-library features like iterators and strings. 

We use the same model’s performance on the unobfuscated test set from 
Sect. 4.2 as a baseline. 

Table 2. RQ2: Accuracy on Individual Obfuscations. Results displayed in terms of 
percent accuracy, along with a relative percent change compared with the baseline 
(first row). Higher is better. 

Obfuscation 

DIRTY VarBERT HexT5 

Retyping Renaming 

overall structs variables variables variables functions 

none 54.5 – 48.8 – 27.7 – 28.7 – 25.2 – 30.6 – 
fla 51.6 (-5.2%) 15.5 (-68.2%) 8.9 (-67.9%) 9.1 (-68.5%)12.5 (-50.5%)13.2 (-56.7%) 
sub 50.9 (-6.5%) 37.0 (-24.2%)17.1 (-38.3%)24.8 (-13.5%)19.0 (-24.9%)19.2 (-37.3%) 
bcf 45.6 (-16.2%)21.7 (-55.5%)10.6 (-61.8%)18.6 (-35.4%)13.5 (-46.7%)14.8 (-51.7%) 
str 52.8 (-3.1%) 25.6 (-47.4%)28.3 (+2.4%) 28.4 (-0.1%) 24.2 (-4.2%) 21.5 (-29.6%) 

Results. The results are summarized in Table 2. Control flow flattening gener-
ally provides the model with the most difficulty across all three tasks and mod-
els. Instruction substitution and ADVobfuscator’s string obfuscation provide the 
least difficulty. 

These results are not surprising. Control flow flattening provides the largest 
textual and syntactic differences from unobfuscated code, and is thus most likely 
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to be the least natural. Conversely, instruction substitution only affects opera-
tions on integers, leaving parts of the code that don’t deal with integer arithmetic 
unaffected. ADVobfuscator only affects string literals. While string literals are 
important, they exist in a minority of functions; functions with no string literals 
are unaffected. 

Answer to RQ2: Different obfuscations may vary widely in dif-
ficulty. Difficulty is correlated with the amount of textual changes 
made to the code. 

5.3 RQ3: How well does Learning Transfer from One Type 
of Obfuscation to Another? 

In this experiment, we measure how well learning models trained on one obfus-
cation perform on binaries compiled with a different obfuscation. Since there are 
an infinite number of possible obfuscations, with malware authors often invent-
ing new obfuscations as well, it is impossible for a model to be trained on every 
possible obfuscation. Therefore, it is important to measure a model’s ability to 
generalize to new obfuscations unseen during training. 

Methodology. We trained models on two obfuscations—control flow flattening 
(fla) and instruction substitution (sub)—and evaluated their performance on all 
other obfuscations in our dataset individually. These two obfuscations comple-
ment each other: one affects the control flow while largely leaving basic blocks 
intact, while instruction substitution involves modifying computations within 
basic blocks while leaving control flow unchanged. We choose these obfuscations 
because they are substantially different so we can better make general claims 
about the transferability of learning on obfuscations. Training a model and eval-
uating a model on the same obfuscation serves as a baseline (fla on fla and sub 
on sub). We trained the fla models on 4,394,527 functions and the sub models 
on 5,171,901 functions. 

Results. The results are shown in Table 3. We note that in both cases, the 
baseline trial performance, where the train and test sets are drawn from the same 
obfuscations, generally perform better than other trials. Both bogus control flow 
and control flow flattening are control flow related obfuscations, but training on 
one and evaluating on the other (Table 3 line 2) does not produce results that 
are consistently or meaningfully better than other obfuscations. Similarly, the 
model trained on instruction-substitution for the most part does not generalize 
well to other obfuscations, though it does for retyping with DIRTY on string 
obfuscation, the other non-control flow obfuscation. These results illustrate the 
magnitude of the shift between even superficially similar obfuscations. Further, 
they suggest that training on one obfuscation will not necessarily transfer to 
other obfuscations. 
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Table 3. RQ3: Transferability of Learning. Results displayed in terms of percent accu-
racy, along with a relative percent change compared with the baselines (first row of 
each table section). Higher is better. 

Train Test 

DIRTY VarBERT HexT5 

Retyping Renaming 

overall structs variables variables variables functions 

fla fla 59.3 – 30.5 – 19.8 – 22.5 – 20.1 – 18.6 – 
fla bcf 41.0 (-30.9%)15.7 (-48.3%)10.6 (-46.1%)20.1 (-10.6%)14.1 (-29.8%)13.5 (-27.3%) 
fla sub 48.6 (-18.1%)24.4 (-19.9%)12.3 (-38.0%)21.1 (-6.2%) 14.9 (-26.2%)15.3 (-17.7%) 
fla str 56.5 (-4.8%) 28.0 (-8.0%) 10.1 (-48.9%)10.1 (-55.0%)12.6 (-37.4%)11.9 (-36.2%) 

sub sub 50.5 – 25.1 – 14.6 – 30.1 – 20.3 – 19.0 – 
sub str 56.0 (+11.0%) 28.1 (+11.8%) 7.6 (-47.8%)12.1 (-59.6%)14.0 (-31.1%)11.9 (-37.6%) 
sub bcf 41.1 (-18.6%)11.4 (-54.6%)13.4 (-8.4%) 22.3 (-25.9%)17.4 (-14.4%)14.3 (-24.8%) 
sub fla 51.7 (+2.4%) 22.1 (-12.0%) 8.0 (-45.0%)10.3 (-65.6%)12.6 (-38.0%)16.1 (-15.4%) 

Answer to RQ3: Learning is not easily transferred between obfus-
cations, even those which are similar. 

5.4 RQ4: How Does Varying the Amount of Obfuscated Data 
in Training Affect Model Performance? 

Table 4. RQ4: Effect of the Quantity of Obfuscated Training Data on Accuracy 

Train Set 

DIRTY VarBERT HexT5 

Retyping Renaming 

overall structs variables variables variables functions 

128-none 47.1 – 18.9 – 12.9 – 14.9 – 14.4 – 12.1 – 
1024-none44.5 (-5.5%) 19.6 (+4.0%) 13.4 (+3.7%) 15.1 (+2.0%) 14.8 (+3.0%) 12.2 (+1.1%) 
8192-none45.2 (-3.9%) 18.3 (-3.2%) 13.0 (+0.8%) 15.1 (+1.7%) 15.4 (+7.0%) 12.7 (+5.1%) 

128-obf 49.8 (+5.7%) 18.2 (-3.6%) 16.2 (+25.4%) 15.7 (+5.4%) 14.9 (+3.1%) 14.4 (+19.4%) 
1024-obf 50.6 (+7.6%) 17.4 (-7.9%) 14.3 (+10.7%) 15.7 (+6.0%) 15.1 (+4.4%) 14.8 (+22.4%) 
8192-obf 50.5 (+7.2%) 17.5 (-7.2%) 16.8 (+30.1%) 17.4 (+16.9%) 16.6 (+14.9%) 14.9 (+23.1%) 

Adding small amounts of obfuscated data improves performance on obfuscated data, 
while adding small amounts of unobfuscated data does not. VarBERT’s 1024-none 
accuracy is slightly greater than its 8192-none accuracy, though they round to the 
same value. 
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Fig. 5. Accuracy gains relative to the 128-none trials for each model/task combination 
(background colored lines) and the mean across all models and tasks (the black lines). 
Adding even a small amount of obfuscated data leads to accuracy gains, though the 
gains are very noisy. The results suggest steeply diminishing returns for additional 
data, possibly following a power law error curve, as predicted by theory [ 16]. 

Generating obfuscated training data at scale is a nontrivial task. Further, one 
may encounter new obfuscations for which no commercial generation tools are 
available. In these cases, there may be only a limited amount of labeled train-
ing data available (perhaps produced by malware analysts as they encounter 
new examples). This is especially important, because, as discussed in Sect. 5.3, 
learning does not transfer well between obfuscations. 

Methodology. We designed an experiment to quantify the relationship between 
model performance and the number of obfuscated examples in its training set. 
Neural networks, including almost all state-of-the-art techniques, require large 
datasets to be fit well. If the amount of obfuscated training data is limited, as is 
likely the case for newly discovered obfuscations in practice, then training only on 
obfuscated training data would be insufficient. On the other hand, generating 
unobfuscated training samples is straightforward using the process described 
by Chen et al. [ 6] and  Pal et al.  [  32]. Therefore, we build datasets consisting 
primarily of unobfuscated data with a limited amount of obfuscated data. In 
principle, this is very similar to the pretrain/finetune paradigm. The two steps 
are typically separated so that a pretrained model can be copied and used for 
multiple different finetuning tasks, but for our experiments, that is not relevant, 
so we don’t separate the steps to simplify the training process. 

Our training sets were created by combining a fixed set of unobfuscated data 
with varying numbers of obfuscated binaries. We created . 3 training sets each 
with .128, .1024, and  .8192 obfuscated binaries respectively. For each obfuscated 
training set, there are an equal number of binaries of each of the four obfuscation 
types. These had 868,968, 883,793, and 1,013,980 functions, respectively. 
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Our goal is to measure the relationship between amount of obfuscated data 
used in training and model accuracy on obfuscated code. However, training set 
size is a factor in model accuracy; typically, the greater the size of the train-
ing set, the higher the accuracy. To account for this, however, we also control 
for training set size by running separate trials with the same amount of purely 
unobfuscated training data. We created training sets consisting purely of unob-
fuscated binaries which had the same total number of decompiled executable 
files as the .128, 1024, and  .8192 obfuscated training sets. That is, the training set 
of equal size to the .8192 obfuscated executable training set, contained the same 
unobfuscated executables as the .1024 unobfuscated train set along with . 7168 
more unobfuscated binaries. The sizes of these control training sets are 870,089, 
885,795, and 1,030,167 functions, respectively. 

We also created shared validation and test sets, with contents evenly split 
between no obfuscations, fla, bcf, sub, and  str. We then evaluated all  six models  
on our single test set. 

Results. The results are shown in Table 4. As expected, adding a small amount 
of unobfuscated data (Table 4, rows 1–3) has very little impact on performance. 
On the other hand, adding obfuscated training data does increase performance. 
Most of the performance gain happens with the first 128 binaries worth of 
functions. Accuracy gains after this point are more muted and are very noisy. 
The results suggest sharply diminishing returns after adding a relatively small 
amount of data, as illustrated in Fig. 5. It is possible that the results follow a 
power law curve as well; there are diminishing returns as the amount of obfus-
cated data added increases. Unfortunately, the scale of the curve is such that 
only a few examples is insufficient to achieve a meaningful improvement in per-
formance. 

Answer to RQ4: Model performance gains increase rapidly after 
the first obfuscated data are added, but drop off rapidly as more 
obfuscated data are added. 

6 Threats to Validity 

Internal validity is the degree to which an experiment establishes an causal rela-
tionship. A source of internal validity was that during data generation, different 
obfuscators can cause build failures at different stages. The automated compila-
tion tool we used, GHCC, collects all products of compilation, even if there are 
failures on subsequent steps. Thus, in some cases, compiling the same project 
with different obfuscations may yield different collections of binaries if an obfus-
cation causes a compilation error. In Sect. 5.1, we account for this by sampling 
from other obfuscations from the same project to ensure that the training set size 
is consistent among the trials. Another option would have been to include only 
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repositories which built completely, but this would have substantially decreased 
the available pool of training data and biased the dataset against complex soft-
ware projects that are difficult to build. 

External Validity is the degree to which an experiment’s results generalize 
beyond the population in the experiment. We expect our results to generalize 
well across other real-world software projects because we train on a variety of 
different real world software and evaluate on a randomly selected subset of them. 
However, our dataset is necessarily biased towards some projects which we could 
build automatically; it is possible that binaries from unbuilt projects might sys-
tematically present some unique challenges that may impact the results. Sim-
ilarly, our dataset is biased towards open-source software, which may not be 
representative of all software. Malware may include other techniques to defend 
against reverse engineering, such as packing and encryption; however, there exist 
a wide variety of unpacking and decryption techniques and commercial services. 
From the perspective of neural variable name and type prediction, these are pre-
processing steps that are orthogonal to our problem. Finally, it is possible that 
there are other obfuscations to which our findings do not generalize. 

Construct Validity is the degree to which the experiment design supports the 
claims. We only claim to measure the accuracy of the models with respect to the 
original names and types in the source code, a common strategy in virtually all 
existing work in ML-based decompilation improvement. Notably, however, we 
cannot directly make claims that the names and types predicted are helpful to 
reverse engineers. However, we expect that the names and types in the original 
source code are typically more helpful than those in the decompiled code, and 
thus predicting more variable names and type names correctly is, in general, a 
positive sign. 

Following Chen et al. [ 6], we filter away variables for which the decompiled 
variable name is the same as what the dataset-generation technique identifies as 
an original variable name. This usually happens when a variable is decompiler-
generated, but also for loop indices and a few other types of variables that have 
predictable names. There are also other variables, about 10% of the total, that 
look decompiler-generated but have original variable names different from the 
original (e.g. v2 vs v5). For consistency with prior work [ 6], our results include 
predictions on these variables. Excluding these causes numbers to shift (in either 
direction) a small amount, though the trends reported in each experiment remain 
the same. 

7 Related Work 

ML-Based Decompilation Improvement There is a significant body of existing 
work in leveraging machine learning to improve and complement decompilation. 
Much of the existing work focuses on predicting one particular type of informa-
tion lost during compilation: variable names [ 26, 31, 32], variable types [ 28, 43, 44], 
function names [ 9, 21, 24], or the original syntactic structure of the original source 
code [ 2, 14, 18, 19]. 



The Impact of Obfuscations on ML-Based Decompilation Improvement 263 

Handling Obfuscations Despite significant work in learning for decompilation, 
very little existing work considers the impact that obfuscations have on these 
techniques. The authors of SymLM [ 21], which predicts function names, do eval-
uate their work on binaries with four obfuscations (bogus control flow, control-
flow-flattening, instruction substitution, and basic block splitting), similar to 
RQ2 in our work (Sect. 5.2). We use three of the same obfuscations, but instead 
of basic block splitting we use string literal obfuscation. They find that obfusca-
tions decrease the accuracy of their tool by 2–10%, depending on the obfuscation. 

Deobfuscation There is also work on undoing obfuscations. Instruction substi-
tution can be undone using common compiler optimization passes. Other work 
focuses on eliminating bogus control flow constraints[ 42] and eliminating dead 
or bogus code [ 7]. There is also work on undoing control-flow flattening obfusca-
tions [ 11]. Symbolic execution can be used in conjunction with techniques similar 
to those in compiler optimization to simplify functions [ 29, 35], sometimes in con-
junction with program synthesis [ 8]. Deobfuscation techniques generally produce 
code that is typically equivalent to the original but may be syntactically very 
different. We leave a study on how deterministic deobfuscation techniques affect 
neural decompilers to future work. 

Neural decompilers may be used on obfuscated code in scenarios where deter-
ministic deobfuscation is not integrated with the security researchers’ toolchains 
or when deterministic deobfuscation fails. In addition, new obfuscations may 
be created at any time; while neural models only need examples, deterministic 
deobfuscation may require the design and implementation of new algorithms to 
handle them if they exploit the limitations in existing techniques. 

8 Conclusion 

Neural decompilation improvement models predict missing abstractions, like 
variable names and types, in decompiled code. Little existing work in neu-
ral decompilation improvement considers obfuscated code, despite obfuscations 
being widespread in practice. In this work, we quantified the impacts that four 
obfuscations have on three prominent decompilation improvement models. 

We find that obfuscations do negatively impact the performance these mod-
els, though training on obfuscated code largely mitigates the impact of obfus-
cations. Unfortunately, as we show in Sects. 5.1, 5.2 and 5.3, each obfuscation 
we tested produced its own substantially different distribution of decompiled 
code. Practically, this means that if an attacker creates malware using their 
own secret obfuscation, a decompilation improvement model will likely perform 
poorly. However, there is a silver lining: as we show in Sect. 5.4, a model can  
see gains in performance on obfuscations when trained on only a few hundred 
examples, which means that models can be adapted for known obfuscations. 

In this work, we focus on predictions at the function level, following 
DIRTY [ 6], VarBERT [ 32], and HexT5 [ 41]; it may also be interesting to examine 
prediction at different levels of granularity (e.g. partial function or full-program 
level), though function-level remains the most common approach. 
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