
A Human Study of Automatically Generated Decompiler Annotations

1st Yuwei Yang
Department of Computer Science

Vanderbilt University
Nashville, USA

yuwei.yang@vanderbilt.edu

2nd Skyler Grandel
Department of Computer Science

Vanderbilt University
Nashville, USA

skyler.h.grandel@vanderbilt.edu

3rd Jeremy Lacomis
Software and Societal Systems Department

Carnegie Mellon University
Pittsburgh, USA

jlacomis@cmu.edu

4th Edward Schwartz
Software Engineering Institute)

Carnegie Mellon University
Pittsburgh, USA

eschwartz@cert.org

5th Bogdan Vasilescu
Software and Societal Systems Department

Carnegie Mellon University
Pittsburgh, USA

vasilescu@cmu.edu

6th Claire Le Goues
Software and Societal Systems Department

Carnegie Mellon University
Pittsburgh, USA

clegoues@cs.cmu.edu

7th Kevin Leach
Department of Computer Science

Vanderbilt University
Nashville, USA

kevin.leach@vanderbilt.edu

Abstract—Reverse engineering is a crucial technique in soft-
ware security, enabling professionals to analyze malware, identify
vulnerabilities, and patch legacy software without access to source
code. Although decompilers attempt to reconstruct high-level
code from binaries, essential information, such as variable names
and types, is often dissimilar from the original version, hindering
readability and comprehension.

Recent advancements have employed AI to enhance decom-
piler output by recovering original variable names and types.
Traditional evaluation of recovery techniques relies on measuring
similarity between original and recovered names, assuming that
higher similarity enhances readability. However, studies suggest
that these “intrinsic” metrics may not accurately predict “ex-
trinsic” outcomes like user comprehension or task performance,
revealing a gap in understanding readability and cognitive load
in reverse engineering.

This paper presents an extrinsic evaluation of machine-
generated variable and type names, focusing on their impact
on reverse engineers’ comprehension of decompiled code. We
conducted a user study with 40 participants—including students
and professionals—to assess code comprehension both with
and without AI-generated variable and type name assistance.
Our findings indicate a lack of correlation between traditional
machine learning metrics and actual comprehension gains, high-
lighting limitations in current evaluation techniques. Despite this,
participants showed a preference for AI-augmented decompiler
outputs. These insights contribute to understanding the effec-
tiveness of automatic recovery techniques in enhancing reverse
engineering tasks and underscore the need for comprehensive,
user-centered evaluation frameworks.

Index Terms—Decompilation, Binary Reverse Engineering,
Human Study

I. INTRODUCTION

Reverse engineering is an essential tool for software secu-
rity professionals, enabling them to analyze the behavior or
provenance of malware [3]–[5], discover vulnerabilities [5, 6],
and patch bugs in legacy software [5, 6]. Without access to

source code, analysis often occurs at the binary level, where
compiler optimizations for speed or size hinder readability [2].

To navigate these challenges, tools like disassemblers and
decompilers are essential. Disassemblers translate binary in-
structions into assembly language, while decompilers, like
Hex-Rays [1], Ghidra [7], and ANGR [8], go a step further
by attempting to reconstruct the higher-level source code
from binaries, offering a view closer to the original code
structure [9]. Decompiled code is still often quite dissimilar
from source code, however, as it is missing information like
variable names and types [2, 10].

Recent works have focused on augmenting decompiler
output by attempting to recover the original variables, types,
structures, and comments to address this problem [2, 11]–[13].
These approaches use machine learning to infer and restore
variable names, types, and structural details that are otherwise
lost during the decompilation process. By training on extensive
code repositories, these models learn patterns and context
cues, enabling them to generate plausible names and types
for the variables in the decompiler output. Evaluations of these
methods typically rely on similarity metrics, comparing the AI-
generated names and structures to those in the original source
code. Based on these metrics and existing research show-
ing the importance of variable names and types, researchers
have claimed significant improvements in the readability of
AI-augmented decompiled code over standard decompiled
code [2, 11]–[13].

Still, even state-of-the-art approaches to variable and type
name recovery have room for improvement. Consider the
examples shown in Figure 1. This figure compares original
source code to its decompiled counterpart with AI-generated
variable and type names. The generated names, while poten-
tially helpful, do not express the variable or type’s purpose

1

Published in the Proceedings of the 2025 IEEE/IFIP International Conference on Dependable Systems and Networks

(a) Original Source Code (b) Decompiled Binary with Name Recovery

Fig. 1: Here we compare the array_extract_element_klen function from the lighttpd project before and after it
has been compiled, decompiled, and augmented with AI-generated variable and type names. Here we use the Hex-Rays
decompiler [1] and the DIRTY tool for recovering variable and type names [2]. This function locates an element within a
custom array type by a given key and retains metadata within the array. Colors in these examples show corresponding variables
and types. This comparison highlights the information that is lost in the process of compilation and the potential inaccuracies
of current tools, increasing the burden of security professionals when they attempt to reverse engineer software.

in the same way the original (human-written) names do, nor
are they particularly similar in appearance to the original
names. Take, for example, data_unset * and char * or
klen and index; these renamings are somewhat dissimilar in
meaning, potentially misleading reverse engineers inspecting
the code.

Previous works in this field leverage the insight that variable
names and types are known to meaningfully contribute to
program comprehension [14, 15] and that renaming variables
and reconstructing types are some of the most common tasks
performed by reverse engineers [16]. To evaluate these ap-
proaches, researchers typically measure the similarity between
the original source code and the recovered variable and type
names, under the assumption that higher similarity according
to their metric will improve readability [11]–[13]. However,
prior studies on similar tasks in code comprehension suggest
that “intrinsic” similarity metrics alone may not reliably pre-
dict improvements in “extrinsic” measures like user compre-
hension or performance [17]. This disconnect indicates that
even high similarity scores might not fully capture the nuances
of readability and cognitive load in reverse engineering tasks.

We evaluate the extrinsic quality of machine-generated
variable and type names by measuring their impact on pro-
grammers’ comprehension of decompiled code. Participants
perform code comprehension tasks with and without AI-
generated names. Comparing their performance reveals how
automatic recovery techniques support security professionals
during reverse engineering.

To our knowledge, no peer reviewed human studies on
automatic variable and type-name recovery techniques have
conducted a comprehensive extrinsic evaluation of their im-
pact on program comprehension, nor have they analyzed
correlations with intrinsic evaluation metrics. Several factors
likely contribute to this gap: the significant cost of recruiting
qualified programmers, the challenge of designing tasks that
authentically capture real-world comprehension processes, and

the prevailing reliance on intrinsic evaluations as sufficient for
publication.

We address this gap by conducting an extrinsic study
evaluating how machine-generated variable names and types
aid program comprehension. Forty participants—30 students,
9 professionals, and 1 unemployed individual, all with at
least one semester or year of reverse engineering experi-
ence—completed decompiled code comprehension tasks, some
with machine-generated renaming support.

This paper makes the following key contributions:
• Empirical Evaluation of ML Performance Metrics:

We find that current ML performance metrics do not
correlate with the effectiveness of variable and type
name recovery for program comprehension, consistently
challenging assumptions about metric reliability across
multiple evaluations.

• User Preference for ML-Augmented Decompiler
Output: Despite minimal performance gains, partici-
pants notably preferred ML-augmented code, highlight-
ing a perceived value even without measurable compre-
hension improvements.

• Developer Performance and Enriched Code Analysis:
Our findings indicate no significant correlation between
developer task performance and the presence of enriched
source code. This insight suggests that current enrich-
ment techniques may have limited impact on practical
comprehension outcomes.

II. RELATED WORK

Here we discuss two key research areas relevant to our
study: empirical studies of program comprehension, with
an emphasis on reverse engineering contexts, and machine
learning approaches for variable and type name recovery in
decompiled code.

2

Published in the Proceedings of the 2025 IEEE/IFIP International Conference on Dependable Systems and Networks

A. Program Comprehension
Empirical studies of program comprehension in reverse en-

gineering often focus on understanding the cognitive processes
involved and evaluating the effects of factors like code obfus-
cation or recovery of missing information on comprehension.
These two research streams are closely related: models of com-
prehension in reverse engineering help guide tool development
to address specific needs of security professionals [18].

1) Comprehension Models in Reverse Engineering: In re-
verse engineering, comprehension models extend general pro-
gram comprehension models, incorporating top-down, bottom-
up, and integrated approaches [19]–[21]. Top-down compre-
hension typically involves forming hypotheses about a binary’s
functionality and refining them with further details, while
bottom-up comprehension begins by analyzing low-level in-
structions and gradually constructing higher-level abstractions.
Integrated models combine both strategies, enabling practition-
ers to adapt according to the task at hand.

A key aspect of comprehension in reverse engineering is the
search for structural cues—known as “beacons”—that provide
clues about code functionality. While program comprehension
research has identified several common beacons—such as
API calls, strings, variable names, sequences of operations,
and constants—that aid in understanding code structure and
functionality [22]–[25], developers face significant challenges
when these elements are obfuscated or absent [25]. In reverse
engineering, professionals must adapt to this resource-starved
environment by relying on alternative beacons, such as control
flow structures, compiler artifacts, and program flow [16].
However, if beacons like variable and type names could be
recovered, they would provide semantic information that could
significantly enhance comprehension, helping practitioners to
form more accurate hypotheses about code behavior and intent.

2) Evaluation of Decompiled Code Comprehension: Hu-
man studies in reverse engineering, particularly those evalu-
ating decompiled code comprehension, remain limited. Hu et
al. [13] conducted a human study to assess optimizations of de-
compiler output using large language models, evaluating user
comprehension with and without optimizations by measuring
differences in correctness and task completion time; however,
this study does not provide an in-depth analysis of its human
subjects study, leaving questions about the causes of improved
comprehension and the correlation between intrinsic metrics
and human comprehension underexplored. Similarly, Cao et
al. [26] examined the effectiveness of modern decompilers by
assessing user correctness in recompiling decompiled code,
noting that decompiler outputs often fail to compile without
modification. Votipka et al. [16] indirectly explored reverse
engineering through structured interviews with practitioners,
offering insights into the practical challenges and strategies
reverse engineers employ.

Given the scarcity of studies directly addressing decom-
piled code comprehension, we draw on evaluation methods
from related areas of software comprehension, such as code
summarization [17, 27]–[29], code regularity [30], and patch
management [31]. These studies commonly employ empirical

methods that measure comprehension through task completion
time, correctness, or qualitative feedback. Although these ap-
proaches are not specific to reverse engineering, they establish
a foundation for designing evaluation techniques adaptable to
decompiled code contexts.

A prevalent methodology in these studies involves using
questions identified by Sillito et al. [32] as relevant to de-
veloper comprehension. Based on empirical studies, Sillito’s
work highlights common question types programmers en-
counter during software evolution tasks. Additionally, Pacione
et al. [33] devised a set of nine principal comprehension activ-
ities by reviewing tasks used across comprehension evaluation
literature. In our work, we adapt Sillito et al.’s questions to suit
reverse engineering tasks, collaborating with a professional re-
verse engineer to ensure the questions’ relevance and realism.
This approach of tailoring comprehension questions to specific
domains is well-established in prior studies [17, 30, 31].

B. Variable and Type Name Recovery

Recent works apply machine learning to improve the read-
ability of decompiled code by recovering variable names,
types, and structural details. These techniques typically involve
training deep learning models on large code repositories to
learn patterns that can be applied to decompiled binaries,
and leveraging both lexical and structural information to
enhance the readability of decompiler output. Jaffe et al.
utilized statistical machine translation techniques for variable
renaming, proposing an alignment method between source
code and decompiler output to construct an effective training
set [34]. Building on this, Lacomis et al. developed DIRE,
which incorporates structural information recovered by the
decompiler to improve variable renaming [11]. DIRE employs
an LSTM encoder to capture lexical features and a Gated
Graph Neural Network (GGNN) to encode structural infor-
mation, thus providing a more contextually aware model for
renaming tasks. DIRECT, a tool by Nitkin et al., extends DIRE
using transformer-based models [12]. DIRTY further advances
these techniques by integrating data layout information from
the decompiler [2]. Using a transformer-based model, DIRTY
predicts both variable names and types, demonstrating the
potential of transformer architectures in handling the complex
relationships within decompiled code. Most recently, Hu et
al. introduced deGPT, an end-to-end framework for refin-
ing decompiler output using a Large Language Model [13].
This work uses a three-role mechanism—referee, advisor, and
operator—to optimize readability through structure simplifi-
cation, variable renaming, and comment generation. Hu et al.
also conduct a user study to measure preference and com-
prehension gains, but this study is based solely on subjective
metrics like user preference and subjective grading. We con-
duct a study with objective measures of code comprehension
and correlate them with intrinsic and subjective measures to
establish the extent to which these measures signify actual
improvements in comprehension.

3

Published in the Proceedings of the 2025 IEEE/IFIP International Conference on Dependable Systems and Networks

III. EVALUATION METHODOLOGY

A. Study Design

Our study draws inspiration from two prior works:
one that assessed the maintainability of computer-generated
patches [31] and another that evaluated the effectiveness of
a research decompiler [5]. In these studies, participants re-
viewed code snippets and responded to questions about them.
Similarly, we provided participants with decompiled code
snippets generated by Hex-Rays v8.2 [1], prompting them
to analyze the code and answer various questions regarding
its functionality. To gauge participants’ perceptions, we also
gathered feedback on the quality of type names and asked
participants to rate their agreement with general statements
about the code overall. For each code snippet, each participant
received either a snippet directly from the decompiler or one
enhanced with DIRTY’s output, assigned randomly.

B. Code Selection

Our study design imposed specific constraints on the code
snippets used. First, to fit within the one-hour study limit and
avoid scrolling issues, snippets had to be short enough to fit
on a single screen with the questions, limiting each snippet
to a maximum of 50 lines. Second, the snippets needed to
be sufficiently “interesting” to detect performance differences
between groups, which we ensured by selecting snippets with
at least two levels of nested structures, such as if branches
or for loops. Third, each snippet needed to be self-contained
so that questions could be asked without additional context
on the functions involved. Fourth, as our study examines the
effects of renaming and retyping tools on performance, each
snippet required at least three renamed or retyped variables.

We sourced the snippets from the projects lighttpd, coreutils,
and openssl, as these projects include common functional-
ity—such as networking, encryption, and file handling—that
is often repurposed by malware developers. To ensure the
questions were relevant, we consulted a professional reverse
engineer. The selected snippets were as follows:

• array_extract_element_klen (AEEK): This
function from lighttpd locates an element within a
custom array type by a given key and retains metadata
within the array.

• buffer_append_path_len (BAPL): This function
from lighttpd concatenates two file paths while ensuring
only one path separator appears between them. For
instance, given the inputs “usr/” and “/bin”, calling
buffer_append_path_len() will yield “usr/bin”.

• postorder: This function from coreutils accepts a bi-
nary tree, a function pointer, and auxiliary information,
calling the function pointer at each node in postorder
traversal of the binary tree.

• twos_complement (TC): This function from openssl
takes an input buffer, an output buffer, and a length. It
copies the input buffer to the output buffer, and if the
padding argument is set to 0xff, it converts the input
buffer to its two’s complement form before copying.

Fig. 2: AEEK question 1, an example question from our sur-
vey. This question appears directly below the AEEK function
in a syntax highlighted window.

C. Question Formulation

To assess the effectiveness of our method in supporting the
reverse engineering process, we crafted questions akin to those
typically asked by reverse engineers when analyzing binaries.
The questions included the following types:

• If the function is called with arguments X, what will be
the value of Y at line number Z?

• What is the purpose of the code from lines X to Y?
• What are the potential return values of this function?
• Which argument in this function is associated with

functionality X?
These questions are modeled after those used in a prior

study [31] and were developed in collaboration with a pro-
fessional reverse engineer to ensure practical relevance. Our
questions were formulated to have well-defined and unam-
biguous answers to facilitate objective manual grading. Based
on this approach, we created two questions per code snippet,
resulting in a total of eight questions. Figure 2 includes an
example of a question that participants answered in this study.
All code snippets and specific questions asked for each are
included in our replication package (cf. Section VIII).

D. Experimental Design

We conducted a between-subjects experiment in which
participants analyzed code snippets either decompiled solely
with Hex-Rays or with Hex-Rays augmented with machine-
generated variable and type names by DIRTY [2]. We choose
DIRTY over alternative tools [11]–[13] because it is the best
performing tool focused on both variable and type name
generation that does not perform additional augmentations that
would act as confounding variables for our study. The study
was administered online through LimeSurvey. Each participant
received a comprehensive overview of the study and the
procedure before beginning. To ensure our focus remained
solely on code quality, participants were not permitted to use
the Internet during the study.

Each participant reviewed one code snippet at a time and
answered questions about it. All four code snippets were
shown to every participant, with treatment randomized by
snippet (e.g., one participant might view the Hex-Rays version

4

Published in the Proceedings of the 2025 IEEE/IFIP International Conference on Dependable Systems and Networks

of buffer_append_path_len and the DIRTY version
of postorder). This randomization offered flexibility, as
incomplete responses from a participant would not exclude an
entire group from the treatment for all questions. We collected
data on both timing and accuracy for each participant.

Variables and Conditions. Our experiment included two
independent variables:

1) Treatment: Code snippets were decompiled using the
Hex-Rays decompiler, widely utilized by malware an-
alysts. We used Hex-Rays version 8.2.230124, the most
current version at the time, comparing the standard
decompiler output with the same output supplemented
by DIRTY annotations.

2) Questions: Since each question varies in difficulty, they
are analyzed individually.

User Perception. Upon completing the questions for each
snippet, participants completed a brief survey. They rated the
impact of argument types and names on their understanding on
a 1-5 scale and could optionally suggest improved names or
types. Additionally, they rated their agreement with statements
reflecting their overall impressions of the code on a 5-point
scale. The full list of statements can be found in our replication
package (c.f., Section VIII).

E. Participants and Recruitment

To assess our tool’s impact on real-world reverse engineer-
ing, we recruited participants with verified reverse engineering
expertise. Personalized invitations were sent to professional
reverse engineers at various companies and institutions as
well as student members of capture-the-flag (CTF) teams with
experience in reverse engineering. Each participant received
an email soliciting participation and giving information on the
task. This email specified the focus on the impact of type and
variable names on reverse engineering and included a link to
allow recipients to participate remotely via LimeSurvey.

We received responses from 31 students, 10 professionals,
and 1 individual currently unemployed. Participation was
anonymous, and no compensation was provided. Although
responses to all questions were optional, we implemented a
quality check to identify any cases of rapid, non-meaningful
responses. We required participants to spend at least as much
time on each snippet as it took an author to fully read the
question. Based on this criterion, we excluded data from one
student and one professional who were removed from the
study entirely.

IV. EXPERIMENTAL RESULTS

In this section, we present our findings on the impact of
machine-generated variable renamings and type recoveries on
reverse engineering tasks, specifically using the DIRTY model
as our test case.

Each research question targets a distinct aspect of compre-
hension and performance:

• RQ1: Do renamings and retypings allow reverse engi-
neers to correctly answer more questions about decom-
piled code?

0.0 5.0 10.0 15.0 20.0 25.0
Count

0-19
20-29
30-39
40-49
50-59

60+
N/A

2

24

2

2

2

3

2

1

1

1

Age Group

0.0 5.0 10.0 15.0 20.0 25.0
Count

Male
Female

N/A

18

7

5

9 1

Gender

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Count

No degree
Bachelor's

Professional
Doctorate

N/A

3

18

4

5

1

3

2

3

1

Education Level

Student
Full-time Employee
Unemployed

Fig. 3: The distribution of age, gender, and education level
among our participants. N/A denotes participants who selected
that the “prefer[ed] not to answer” the given question.

• RQ2: Do renamings and retypings allow reverse engi-
neers to answer questions about decompiled code more
quickly?

• RQ3: Do users of DIRTY perceive its renamings and
retypings as improving their understanding?

• RQ4: Do users’ perceptions of DIRTY’s helpfulness
align with their performance?

• RQ5: Do similarity metrics such as BLEU scores cor-
relate with code comprehension?

A. RQ1: Correctness

The first research question asks if machine generated vari-
able and type renamings allow users to answer more questions
correctly. Recall that each participant is randomly assigned to
a treatment group for each of 4 snippets (i.e., a snippet with
DIRTY annotations, or a snippet without DIRTY annotations).
For each snippet we ask the participant 2 questions, for a total
of 8 questions per participant.

Our analysis compares variable distributions between tasks
completed under treatment and control conditions, accounting
for differences in question difficulty, participant experience in
both general coding and reverse engineering, and repeated re-
sponses per participant. To address the variability in participant
skill and task complexity, we used a mixed-effects regression
model [35], which groups residuals by random effects—here,
by user and question.

5

Published in the Proceedings of the 2025 IEEE/IFIP International Conference on Dependable Systems and Networks

In R syntax, our model is:

correctness = uses DIRTY + Exp Coding

+ Exp RE + (1|user) + (1|question)
(1)

Since correctness is binary, we apply logistic regression,
using glmer in R and setting statistical significance at
p < 0.05. To evaluate model fit, we report both marginal
(R2

m) and conditional (R2
c) coefficients, computed with the

r.squaredGLMM function [36].

TABLE I: GLMER Correctness Performance Model

Dependent variable:
Correctness

Uses DIRTY −0.074± 0.227
General Coding Experience 0.056± 0.030
Reverse Engineering Experience −0.024± 0.044
Constant 0.563± 0.513

Observations 273
Num Users 36
Num Questions 8
σ(Users) 0.85
σ(Questions) 1.14
R2

m 0.041
R2

c 0.405
Akaike Inf. Crit. 313.091
Bayesian Inf. Crit. 334.747

Note: For all correctness values, p > 0.05

Table I summarizes the results of our model. This model
fits our data reasonably well, with an R2

c of 40.5%. We found
no statistically significant difference when participants use
DIRTY and do not have sufficient evidence to conclude
DIRTY users answer more questions correctly. In fact,
the usage of variable renaming has a slight (though
insignificant) negative effect on correctness on average.
However, the large standard error and insignificance make
this result inconclusive.

Incorrect or imprecise renamings can be misleading.
Occasionally, DIRTY can be misleading. An example is shown
in Figure 4. In this question, postorder question 2, we
told the participants that the three arguments represented a
pointer to a tree structure, a function pointer to call on each
node, and auxiliary information to maintain as the tree was
being traversed and asked them to match the arguments to
their description. The body of the code example 1 makes
it fairly clear that the first argument is the tree structure,
meaning participants must reason more about the function
pointer and auxiliary information. Figure 4a shows the original
Hex-Rays version of the code, which strongly suggests that the
second argument is the function pointer. DIRTY’s suggestions
in Figure 4b are seemingly quite good; it correctly identifies
that two of the arguments correspond to a tree and a compar-
ison function. However, it reverses the order of the last two
suggestions. Figure 5 depicts the correctness of answers to
the questions asked during the survey. This shows that while

1The body of this function is largely omitted for brevity, but it can be found
in our replication package.

1 __int64 __fastcall postorder(
2 _QWORD *a1,
3 __int64 (__fastcall *a2)(__int64, _QWORD *),
4 __int64 a3) {
5 // ...
6 v5 = a2(a3, a1);
7 // ...
8 }

(a) Hex-Rays

1 __int64 __fastcall postorder(
2 tree234 *t,
3 void *e,
4 cmpfn234 cmp) {
5 // ...
6 ret = (e)(cmp, t);
7 // ...
8 }

(b) DIRTY

Fig. 4: postorder question 2: an example where DIRTY
suggests reasonable types and names but applies them to
the wrong arguments. Participants were asked to match each
argument to its purpose. In (a), a1 is a tree pointer, a2 a
function pointer, and a3 auxiliary info. In (b), DIRTY correctly
identifies a tree and function type but swaps a2 and a3. This
mistake could be the reason that participants who did not
receive DIRTY renamings performed better on this question.

almost every person who received only the Hex-Rays output
answered this question correctly, nearly half of the participants
who received the DIRTY annotations answered this question
incorrectly (a Fisher’s exact test on this data confirms this
confusion, p = 0.01059).

Anticipating this, we also asked participants to justify their
answers by answering the question “Informally, how did you
reach your conclusion?” For qualitative analysis we used
the standard grounded theory approach of open coding [37].
Each response was individually coded, then these codes were
synthesized and used to identify themes. Two main themes
were identified in answers from the users who received the
DIRTY version of the code, which were directly correlated
with correctness of their answer.

Among participants who received the DIRTY code and
answered correctly, we identified the theme: The usage of
the variables inside the code demonstrate their purpose (P5,
P6, P7, P8, P9, P11, P14, P15, P16, P17, P18, P19). These
participants indicated that they considered not just the names
and types of the variables, but also their usage in the code.
These participants summarize this thought process well:

“Line [6] shows the actual function call; that re-
quires e to be the function and cmp to be an
argument to it, at odds with the type information
in the arguments” (P8)

“Similar to the previous answer – I ignored the
types and looked at the use. The only actual call
through a function pointer is on line [6], so e is
the visit/comparison function. It is passed in cmp
(which is never changed, despite being confusingly

6

Published in the Proceedings of the 2025 IEEE/IFIP International Conference on Dependable Systems and Networks

0%

25%

50%

75%

100%

Yes No
Correct

Technique

DIRTY

Hex−Rays

AEEK Q 1

0%

25%

50%

75%

100%

Yes No
Correct

Technique

DIRTY

Hex−Rays

AEEK Q 2

0%

25%

50%

75%

100%

Yes No
Correct

Technique

DIRTY

Hex−Rays

BAPL Q 1

0%

25%

50%

75%

100%

Yes No
Correct

Technique

DIRTY

Hex−Rays

BAPL Q 2

0%

25%

50%

75%

100%

Yes No
Correct

Technique

DIRTY

Hex−Rays

TC Q 1

0%

25%

50%

75%

100%

Yes No
Correct

Technique

DIRTY

Hex−Rays

TC Q 2

0%

25%

50%

75%

100%

Yes No
Correct

Technique

DIRTY

Hex−Rays

POSTORDER Q 1

0%

25%

50%

75%

100%

Yes No
Correct

Technique

DIRTY

Hex−Rays

POSTORDER Q 2

Fig. 5: Answers to questions grouped by treatment. “Yes”
means the answer was correct, “No” means incorrect.

named the same as the − > cmp field), so the cmp
argument is the additional information [...]” (P11)

Participants who answered the question incorrectly reached
their conclusion for a different reason: the variable names and
types themselves indicate their intended usage (P1, P2, P3,
P4, P6, P10, P12, P13). These participants took the types and
names at face-value and did not consider their usage in the
code. Indicative responses are:

“The variable names were very intuitive. For the
tree, the type and its usage in the code was really
helpful.” (P1)
“The main giveaway is the naming. Also I see that
cmpfn234 is defined as a function pointer. The nam-
ing are very descriptive and helped in identifying
what each component does.” (P13)

Notice how participants who referenced the code itself
and were skeptical of the types suggested by DIRTY got
the answer correct, while participants who got the answer
incorrect trusted the types it suggested. The pattern of ac-
cepting DIRTY’s annotations at face value was not unique
to the postorder example. For users who received DIRTY
annotations, we compared groups based on their correctness by
the Likert opinions participants assigned to the types DIRTY

suggested using a Wilcoxon rank sum test with continuity cor-
rection. We found that participants who answered incorrectly
tended to trust DIRTY’s suggestions more than participants
who answered correctly across the board (p = 0.02477). This
correlation could suggest that it is important to train users
to remain skeptical while reverse engineering, even with the
types suggested by tools like DIRTY.

We did not find statistical evidence that using tools
like DIRTY allows for more users to reach a correct
conclusion. However, there is some anecdotal evidence
that these tools might help when used correctly while
considering code structure, which may help inform
future tool development and use.

B. RQ2: Timing

Research question 2 asks if DIRTY has an impact on the
timing of participants’ answers. Similarly to correctness, we
fit a mixed-effects model of the equation using the user and
question as random effects. Below is the R formula we used:

timing = uses DIRTY + Exp Coding

+ Exp RE + (1|user) + (1|question)
(2)

TABLE II: LMER Timing Performance Model

Dependent variable:
Completion Time

Uses DIRTY 26.296± 16.865
General Coding Experience 4.488± 2.620
Reverse Engineering Experience −5.647± 3.948
Constant 192.658* ± 54.308

Observations 296
Num Users 37
Num Questions 8
σ(Users) 94.77
σ(Questions) 130.96
R2

m 0.025
R2

c 0.431
Akaike Inf. Crit. 4,026.521
Bayesian Inf. Crit. 4,052.354

Note: ∗p < 0.05

Unlike the binary “correctness” results, timings are contin-
uous and we can use a standard linear mixed-effects model
provided by the lmer function in R. Our results are shown
in Table II. First, the model does fit our data reasonably well,
with an R2

c of 43.1%. As with the correctness results, none
of our coefficients were statistically significant. We did not
find statistically significant evidence to conclude that users
of DIRTY were able to answer questions more quickly. We
find no significant difference in completion time between
the groups that use and do not use AI variable and type
renaming.

In some cases, AI variable and type renaming can help
improve correctness without requiring more time. Figure 5
shows that DIRTY improved correctness on BAPL tasks.

7

Published in the Proceedings of the 2025 IEEE/IFIP International Conference on Dependable Systems and Networks

// Original
void buffer_append_path_len(buffer * restrict b, const

char * restrict a, size_t alen)
// Hex-Rays
void *__fastcall buffer_append_path_len(__int64 a1, _BYTE

*a2, size_t a3)
// DIRTY
void *__fastcall buffer_append_path_len(SSL *s, const

char *str, size_t n)

(a) Function signature

DIRTY

Hex−Rays

0 5 10 15
Time (m)

DIRTY Hex−Rays

Completion Time for BAPL

(b) Completion time

Fig. 6: Function signature and completion time for both
buffer append path len tasks. Here, DIRTY is able to rea-
sonably recover some names and types (e.g., char *str and
size_t n) but not all of them (e.g., SSL and __fastcall
could be confusing to users).

Figure 6 shows the completion times for both groups. There is
not a statistically significant difference in the completion time
between these groups (the Hex-Rays group has a mean of
256.26 seconds and a standard deviation of 145.1, while the
DIRTY group has a mean of 242.3 seconds and a standard
deviation of 202.28. We performed a Welch Two Sample t-
test and p = 0.7204), but DIRTY does have some impact
on reasoning ability. For example, notice how the signatures
shown in Figure 6a indicate that DIRTY’s choice of the type
and name of the second argument suggest that it is used as an
input string. This likely aided participant understanding of the
BAPL tasks, which ask about the state of variables related to
str.

Sometimes AI variable and type renaming correlates
with people taking longer to reach the correct conclusion.
Figure 7 shows the amount of time participants took to
correctly answer AEEK question 2. DIRTY users took just
over three and a half minutes longer to reach a correct answer
than non-DIRTY users. From our experience, we suspect that
this is for multiple reasons: first, DIRTY assigns the name
ret to a variable that is never used for a return value,
therefore users need to carefully scan and make sure they
have spotted every return statement in the code. Second,
the previously confusing statement on line 9 has become even
more confusing. For a practiced reverse engineer, the pattern 8
* index + *(a1 + 8) indicates an access of an element
of an array inside a struct. DIRTY’s annotation does not make
this clearer, in fact it muddies the water. Although the type

1 __int64 __fastcall array_extract_element_klen(__int64 a1,
__int64 a2, unsigned int a3) {

2 //...
3 //...
4 int index;
5 __int64 v7;
6 //...
7 if (index < 0)
8 return 0LL;
9 v7 = *(_QWORD *)(8LL * index + *(_QWORD *)(a1 + 8));

10 //...
11 return v7;
12 }

(a) Hex-Rays Output

1 char *__fastcall array_extract_element_klen(array_t_0 *
array, void *key, int index) {

2 //...
3 int indexa;
4 int ret;
5 char *next;
6 //...
7 if (indexa < 0)
8 return 0LL;
9 next=*(char**)(8LL*indexa + *(_QWORD*)&array->size);

10 //...
11 return next;
12 }

(b) DIRTY Output

DIRTY

Hex−Rays

0 3 6 9
Time (minutes)

Tr
ea

tm
en

t

Completion Time for (Correct) − AEEKQ2

(c) Completion time

Fig. 7: Functions and completion times for AEEK tasks. Here,
users of DIRTY were slower despite the more meaningful
variable and type names.

DIRTY predicts is generally “correct” (it predicts the type
array_t_0 *, while the original code used the type array
*), the layouts of these types are different. The size field of
array_t_0 should instead be a pointer to an array.

We were unable to find statistically significant evi-
dence that machine-generated variable and type name
recoveries reduce the time that users spend on reaching
a correct conclusion. This is likely partially due to
particularly confusing names that can lead users to take
more time to reach the correct conclusion.

C. RQ3: Opinions

Our third research question asks about users’ perception
of the usefulness of the renamings and retypings provided
by DIRTY. To answer this, for each argument in a snippet,
we asked participants to fill in the blank in the statement
“The type and name of this argument understanding:”

8

Published in the Proceedings of the 2025 IEEE/IFIP International Conference on Dependable Systems and Networks

Name

Type

100 50 0 50 100

DIRTY

Hex−Rays

DIRTY

Hex−Rays

Percentage

Response

Provided immediate

Improved

Did not affect

Hindered

Prevented

Fig. 8: Participants’ overall opinion of types and names
impacted their understanding of the code.

with “Prevented”, “Hindered”, “Did not affect”, “Improved”,
or “Provided immediate”.

Figure 8 shows the participants’ overall opinion of how the
types and names from both DIRTY and Hex-Rays impacted
their understanding of the code. We performed a Wilcoxon
rank sum test with continuity correction on these results and
found that in general, users prefer when variables are at least
given some name, even if it does not agree with the actual use
of the variable (p = 5.072e− 14, difference in location = 1).
This result is not surprising: the names generated by Hex-Rays
in this study are themselves rarely indicative of the purpose
of the variable, except in cases like ret for a return variable
or src and dest for source and destination variables. In
general, tools like DIRTY are better at assigning names that
carry more nuanced semantic meaning.

There is an inability to make an overall statistical
claim about users’ opinions about types, as there is no
significant difference between the DIRTY and Hex-Rays
groups (p = 0.2734). However, we did notice that the
twos_complement snippet appears to be an outlier where
DIRTY’s suggestions are considered quite poor by users,
where other snippets experienced an increase in preference
over Hex-Rays, suggesting that reception is mixed overall.
Thus, according to subjective participant ratings, DIRTY’s
type renaming did not significantly improve user understand-
ing over the original Hex-Rays output overall.

We find that users universally prefer the variable
names provided by DIRTY compared to the variable
names provided by Hex-Rays. However, we find no
statistically significant evidence that users perceive that
the types provided by DIRTY are more helpful than
the default types.

D. RQ4: Users’ Perception vs. Performance

The fourth research question examines whether participants’
perceptions of the helpfulness of DIRTY’s generated variable
names and types align with their actual performance on reverse
engineering tasks. To address this, we analyzed the relationship
between participants’ ratings of DIRTY’s output and their
correctness on task-related questions. Participants rated the
usefulness of DIRTY’s variable and type renamings on a five-
point Likert scale: (1) “Provided immediate,” (2) “Improved,”
(3) “Did not affect,” (4)“Hindered,” and (5) “Prevented.”

To evaluate the alignment between perceived helpfulness
and task performance, we conducted Spearman correlation
tests on the Likert scores for both variable names and types
against participants’ correctness. The Spearman test was ap-
plied because it does not assume a normal distribution of
data and it assesses monotonic relationships instead of linear
relationships, making it suitable for our Likert-scale responses
[38]. This approach allows us to more accurately evaluate the
relationship between participants’ subjective perceptions and
their actual performance. For variable types, the Spearman
correlation analysis indicated a significant positive correlation,
with a p-value of 0.02459 and a ρ of 0.1035. Because
lower Likert ratings indicate increased preference, this positive
correlation indicates that as ratings get worse, correctness in-
creases. The correlation for variable names was not statistically
significant (p = 0.6467).

In alignment with our correlational analysis, we find
that it is sometimes the case that users do not pre-
fer the DIRTY-suggested types, despite them being help-
ful. For example, participants given the DIRTY version
of the twos_complement function were more likely to
answer questions correctly and answered correctly faster
on average compared participants given the Hex-Rays ver-
sion. However, participants given the DIRTY version of the
twos_complement function often rated the types in that
function poorly, indicating that they “Hindered” or “Pre-
vented” their understanding. Meanwhile, no participants who
were given the Hex-Rays version of this function indicated
that any types “Hindered” or “Prevented” their understanding
despite their performance decreasing compared to the DIRTY
version. These results suggest that participants’ perceptions
of the usefulness of DIRTY’s annotations do not always
consistently align with their actual performance on the tasks.
Alternatively, users could have a higher expectation of a
system that suggests type information, even when it actively
improves their performance on a task. In either case, we find
that user preference alone is not a reliable metric for measuring
the usefulness of decompiler annotation tools.

We find that users perceptions of the usefulness of
DIRTY’s annotations do not always align with their
actual performance on reverse engineering tasks.

9

Published in the Proceedings of the 2025 IEEE/IFIP International Conference on Dependable Systems and Networks

E. RQ5: Do Similarity Metrics Reflect Code Comprehension?

We next investigate the extent to which similarity met-
rics reflect how well machine-generated renamings improve
a developer’s ability to comprehend code. Prevailing tech-
niques in this area use accuracy (what percent of machine-
generated names are exactly the same as the ground-truth
names from the source code) [2, 11, 12], Levenshtein distance
(the edit distance between machine-generated and ground truth
names) [11]–[13, 39], and Jaccard Similarity (the ratio of
the intersection of the sets of n-grams in machine generated
and ground truth names to the union of those sets) [12,
40]. Note, however, that tokens like size and length are
maximally distant according to these metrics, even though
semantically they are quite similar. We therefore investigate
additional similarity metrics from machine translation aimed
at overcoming this shortcoming. Specifically, we include the
BLEU score [41], codeBLEU [42], BERTScore F1 [43], and
VarCLR [44] similarity metrics. BLEU score assesses n-
gram overlap between generated and reference texts, provid-
ing an indicator of surface-level similarity between machine-
generated and ground-truth names. CodeBLEU extends BLEU
to include AST and dataflow information for comparing
code, rather than natural language. Meanwhile, BERTScore
F1 leverages embeddings from the BERT Transformer model
to evaluate semantic similarity, providing a more nuanced
measure that can capture meaning rather than exact n-gram
overlap. Finally, VarCLR leverages embeddings from training
on variable names specifically to encapsulate semantic mean-
ing for this domain, similarly to BERTScore F1.

For each code snippet in our survey, we manually matched
each variable and type name to its corresponding name in the
associated original source code, and appended all the names
into paired strings (one string for DIRTY-renamed variables
and types, and one string for the original variables and types)
so that entire renamed code snippets could be compared to
the original source using BLEU score, Jaccard Similarity,
Levenshtein distance, and BERTScore F1. For codeBLEU, we
calculate similarity scores between lines of code containing
analogous variable and type names so that we can capture the
structure of the code around the names. Finally, since VarCLR
is trained on variable names and not on sequences or sentences,
it reports a separate similarity result for each variable name.
However, we do not have correctness or timing measures
associated with each individual variable name; we instead
keep correctness and timing measures for entire functions
with multiple variables and types. Thus, we compare matching
variable names and types in isolation and average the resulting
scores over each function to obtain an average VarCLR score
for each function.

To explore how similarity metrics accurately reflect par-
ticipants’ code comprehension, we examined the correlations
between these metrics and two key performance indicators:
time taken and correctness. Specifically, we used Spearman
correlation tests to analyze the relationships between partic-
ipants’ task performance and various similarity metrics, in-

cluding BLEU scores, Levenshtein distance, Jaccard similarity,
and BERTScore F1. However, despite a significant positive
correlation with timing and negative correlation with correct-
ness, Levenshtein distance had high values2 that indicate it
may not be suitable for this context. To further understand
the similarity between the original code and DIRTY code,
12 expert coders rated the variable names and types on their
similarity with the original source code. These ratings were
represented by Likert scores, and we average these scores
to achieve our human evaluation score. These ratings had
an ordinal Krippendorf’s α of 0.872, indicating substantial
and reliable agreement [45]. We then conducted Spearman
correlation tests on the similarity scores generated by each
metric against task time and correctness. These results are
depicted in Tables III and IV.

TABLE III: Correlation Between Similarity Metrics and Par-
ticipant Time Taken on DIRTY Annotated Code Snippets

Similarity Metric Correlation ρ p-value

BLEU 0.2568 0.0010
codeBLEU 0.2568 0.0010
Jaccard Similarity 0.5193 <0.0001
BERTScore F1 0.006 0.94
VarCLR 0.2568 0.0010
Human Evaluation (Variables) 0.2611 <0.0001
Human Evaluation (Types) 0.1065 0.0004542

TABLE IV: Correlation Between Similarity Metrics and Par-
ticipant Correctness on DIRTY Annotated Code Snippets

Similarity Metric Correlation ρ p-value

BLEU 0.0792 0.3437
codeBLEU 0.0792 0.3437
Jaccard Similarity -0.2173 0.0086
BERTScore F1 0.2302 0.0053
VarCLR 0.0792 0.3437
Human Evaluation (Variables) -0.1241 <0.0001
Human Evaluation (Types) 0.0517 0.1072

Our results show a significant positive correlation between
task time and every similarity metric, save for BERTScore F1.
This suggests that higher similarity to the original source code,
as measured by these metrics, is associated with longer task
times. Meanwhile, BERTScore F1 is only slightly and insignif-
icantly positively correlated with time. Counterintuitively, All
of the significant cases indicate that improved AI renaming
performance correlates with developers to take more time to
answer comprehension questions.

In terms of correctness, the correlations with similarity met-
rics were mixed. While BLEU score, codeBLEU, and VarCLR
showed positive but insignificant correlations with correctness,

2On average, renamings in our code snippets exhibited Levenshtein dis-
tances greater that the total length of the renamed string, indicating that most
characters had to be edited and some characters had to be added to produce
the ground truth string.

10

Published in the Proceedings of the 2025 IEEE/IFIP International Conference on Dependable Systems and Networks

BERTScore F1 had a significant positive correlation. Mean-
while, Jaccard Similarity and human evaluated Likert scores
for both variable and type names exhibited significant negative
correlations with correctness, indicating that improved AI
renaming performance according to these metrics correlates
with developers answering questions correctly less often.

These findings reinforce the conclusion from RQ4, indicat-
ing that participants’ perceptions of DIRTY’s usefulness do
not consistently align with their performance. In these trials,
BLEU score, codeBLEU, and VarCLR all have distinct scores,
but very similar distributions, causing their correlational results
to be nearly identical. Interestingly, Jaccard Similarity appears
to correlate most closely with human similarity judgments in
terms of both timing and correctness, suggesting it may be
a more effective metric for capturing users’ comprehension
in this context. However, our results also reveal that DIRTY’s
annotations may actually hinder the participants’ performance,
with better-performing similarity metrics often correlating
with lower correctness and longer time. This suggests that
while DIRTY enhances the perceived readability of code, it
may inadvertently lead users to over-rely on its suggestions,
resulting in more errors.

While previous evaluations of DIRTY primarily fo-
cused on system-level metrics like recovery rate and
optimization, our human-centered study suggests that
these commonly used metrics may not effectively
reflect human code comprehension. This highlights
the need for the research community to develop more
robust metrics that accurately reflect comprehension
and usability in real-world tasks.

V. DISCUSSION

In the results section, we discussed the implications of re-
sults found for each research question. Our results highlighted
two key challenges in developing advanced decompiler tech-
niques. First, as decompiler outputs become more readable,
users tend to place greater trust in them, sometimes leading to
errors they might not have made with more basic outputs. Sec-
ond, there is a clear need for more refined metrics to evaluate
the effectiveness of augmentation techniques accurately.

Our findings suggest that users of decompiler annotations
frequently rely on the provided renamings, even when aware
that the output may not be fully reliable. In some cases,
this led users to misinterpret or over-rely on these annota-
tions, resulting in incorrect conclusions. In other instances,
participants were skeptical of the renamings, which may have
increased cognitive load and extended the time required to
reach the correct answer. These results indicate that, while
annotations can be a useful aid, they may also introduce new
challenges. Consequently, annotations should complement a
reverse engineer’s direct analysis of the decompiled code,
rather than serve as a primary tool for comprehension.

Our study also indicates a need for more appropriate metrics
that account for the way variable and type names function

within the broader code context, as successful participants
often reported relying on these contextual clues to make
judgments about the code’s purpose and behavior. Existing
similarity metrics primarily assess surface-level similarity by
comparing generated names with those in ground-truth code.
However, these metrics may overlook the functional relevance
of annotations and the extent to which they assist in actual
comprehension.

A refined metric would ideally consider not only the lexical
match between the generated and original names but also their
role in the code’s logic, helping evaluate whether annotations
improve clarity in understanding data flow, control structures,
or key functional relationships within code. For instance, a
name recovery that identifies a pointer to a data structure may
have limited impact if it fails to convey that structure’s role
in the code. Similar approaches have successfully addressed
this issue in the domain of code summarization. For example,
Mastropaolo et al. leveraged contrastive learning techniques to
evaluate how well a generated summary or annotation aligns
with the underlying code semantics, providing a more reliable
measure of comprehension impact than traditional similarity
metrics [46]. Additionally, Zhang et al. applied eye-tracking
technology to analyze developers’ visual attention during code
comprehension tasks, identifying which tokens and structures
are most cognitively salient [47]. Their findings enabled
the development of evaluation metrics that weight tokens
based on their actual importance to comprehension, offering
a more human-centered assessment of annotation quality. By
incorporating such contextual factors, decompiler annotation
metrics could better align with human comprehension and
usability, ultimately providing a more accurate assessment of
the effectiveness of annotation techniques.

We recommend that future work in reverse engineer-
ing consider developing and validating metrics that capture
these dimensions of code readability. Metrics that incorpo-
rate both structural and semantic relevance—possibly through
embedding-based similarity measures or by mapping variable
interactions across the code—could offer more insight into
the practical value of decompiler augmentations. Such an
approach could also reveal specific conditions under which
annotations are most beneficial, supporting the design of
augmentation methods that optimize accuracy and utility for
software reverse engineers.

VI. THREATS TO VALIDITY

One threat to the validity of this study is that our technique
was tested exclusively on open-source code snippets. Open-
source software is generally designed with readability and
logical structure in mind. This is rarely the case for real-world
malware, which often uses techniques to conceal the function-
ality of their binaries. Additionally, our dataset, sampled from
GitHub, is inherently biased toward well-known projects, and
our experiments were limited to a finite set of code snippets.
However, to address this limitation, we selected snippets from
diverse domains and difficulty levels to ensure as broad a
representation as possible within these constraints.

11

Published in the Proceedings of the 2025 IEEE/IFIP International Conference on Dependable Systems and Networks

Our study also exclusively measured the outputs of the
Hex-Rays decompiler and the DIRTY tool for variable and
type name recovery, without considering alternatives such as
Ghidra [7] or deGPT [13]. DIRTY is specifically tailored to
Hex-Rays’ binary representation [2], while alternative tools,
such as deGPT, perform additional augmentations outside
the scope of our study, such as structural simplification and
comment generation [13]. These augmentations would act as
confounding variables for our experiment that would prevent
us from establishing a causative link between variable and type
renamings and developer comprehension. Other tools either
do not perform as well as DIRTY or are not focused on both
variable and type name recovery [11, 12].

Next, our study was constrained to four code snippets.
While additional snippets could provide further insights and
reduce the influence of outliers like AEEK, doing so would
require additional participants to maintain statistical power.
Given the difficulty of recruiting qualified reverse engineers,
we opted for a study design that balanced feasibility with
robust analysis. Future work could explore alternative designs,
such as randomizing a larger pool of snippets per participant.

Furthermore, our participant pool consisted of self-selected
reverse engineers from industry and academia rather than a
fully randomized sample of a defined population. As a result,
statistical significance should be interpreted with caution.
While our statistical tests provide useful insights into observed
trends, they should not be taken as definitive evidence of uni-
versal laws. Instead, they indicate what might be expected in a
similar population under comparable conditions. Additionally,
we acknowledge growing concerns about strict reliance on the
arbitrary 0.05 p-value threshold and encourage future work to
consider Bayesian or effect-size-based approaches for deeper
statistical interpretation.

Additionally, our study compared decompiler output with
AI-augmented annotations but did not include human-
generated annotations. This could introduce biases, as partic-
ipants’ trust or skepticism toward AI might influence their
engagement with the annotations. Future work comparing
AI annotations with the original source code and human-
generated annotations could better isolate the impact of an-
notation provenance on comprehension.

Finally, our selected code snippets represent the entire work-
flow. The constraint that each code sample be self-contained on
a single page is particularly limiting. So, direct integration with
a decompiler would likely yield more comprehensive results.

VII. KEY TAKEAWAYS

This paper presents a novel human study designed to evalu-
ate the impact of the DecompIled variable ReTYper (DIRTY)
on performance in reverse engineering tasks. In this study,
both professional and amateur reverse engineers were asked to
answer questions that simulated real-world reverse engineering
challenges. We recorded participants’ correctness and response
times, and gathered qualitative feedback on their perceptions
of the quality of DIRTY’s variable renaming, retyping, and
the overall code structure.

Our findings challenge several assumptions about the effec-
tiveness of machine-learning-based decompiler augmentation:

• ML Performance Metrics Do Not Predict Com-
prehension Gains: We find no significant correlation
between commonly used similarity metrics (e.g., BLEU,
Jaccard similarity) and actual improvements in program
comprehension. This suggests that traditional evaluation
methods may not fully capture the nuances of readability
and cognitive load in reverse engineering.

• Users Prefer AI-Augmented Outputs, Even Without
Performance Gains: Despite no measurable improve-
ments in correctness or efficiency, participants reported
a strong preference for AI-enhanced annotations, indi-
cating a perceived value that is not reflected in objective
comprehension metrics.

• Enriched Decompiler Output Does Not Necessarily
Improve Performance: Our study found no significant
evidence that AI-generated variable and type names
improved task performance. In some cases, misleading
annotations correlated with errors, highlighting the need
for user skepticism when working with AI-augmented
tools.

• User Trust and Skepticism Play a Key Role: Partic-
ipants who fully trusted AI-generated annotations were
more likely to answer incorrectly, while those who
critically analyzed the code structure performed better.
This underscores the importance of training reverse
engineers to verify AI-generated annotations rather than
accepting them at face value.

• Future Research Should Refine Metrics and Base-
lines: The lack of alignment between similarity metrics
and human comprehension highlights the need for more
robust evaluation techniques.

Overall, our results suggest that while AI-assisted tools
may enhance usability, they do not necessarily translate into
improved comprehension, calling for more research into how
to bridge this gap effectively.

VIII. DATA AVAILABILITY

All data and scripts are available at
https://osf.io/wusmj/?view_only=
915e96b79ba44a178a2a8a95c9fa4c5c. This
repository includes comprehensive documentation to facilitate
replication and extension of our research.

IX. ETHICAL CONSIDERATIONS

All experiments described in this study were reviewed
and exempted by our institution’s Institutional Review Board
(IRB), confirming that the study posed minimal risk to partic-
ipants. Recruitment targeted professionals and students with
verified experience in reverse engineering, and participation
was entirely voluntary and anonymous. No personally identi-
fiable information was collected, and participants had the right
to withdraw at any point without consequence. Participant
recruitment and experience are detailed in Section III-E.

12

Published in the Proceedings of the 2025 IEEE/IFIP International Conference on Dependable Systems and Networks

https://osf.io/wusmj/?view_only=915e96b79ba44a178a2a8a95c9fa4c5c
https://osf.io/wusmj/?view_only=915e96b79ba44a178a2a8a95c9fa4c5c

REFERENCES

[1] Hex-Rays, “The hex-rays decompiler (v8.2.230124),” 2019. [Online].
Available: https://hex-rays.com/decompiler

[2] Q. Chen, J. Lacomis, E. J. Schwartz, C. Le Goues, G. Neubig, and
B. Vasilescu, “Augmenting decompiler output with learned variable
names and types,” in 31st USENIX Security Symposium (USENIX
Security 22), 2022, pp. 4327–4343.

[3] L. Ďurfina, J. Křoustek, and P. Zemek, “Psybot malware: A step-by-step
decompilation case study,” in 2013 20th Working Conference on Reverse
Engineering (WCRE). IEEE, 2013, pp. 449–456.

[4] K. Yakdan, S. Eschweiler, E. Gerhards-Padilla, and M. Smith, “No more
gotos: Decompilation using pattern-independent control-flow structuring
and semantic-preserving transformations.” in NDSS. Citeseer, 2015.

[5] K. Yakdan, S. Dechand, E. Gerhards-Padilla, and M. Smith, “Helping
johnny to analyze malware: A usability-optimized decompiler and
malware analysis user study,” in 2016 IEEE Symposium on Security
and Privacy (SP). IEEE, 2016, pp. 158–177.

[6] M. J. Van Emmerik, Static single assignment for decompilation. Uni-
versity of Queensland, 2007.

[7] N. S. Agency, “The ghidra decompiler,” 2019. [Online]. Available:
https://ghidra-sre.org/

[8] Z. L. Basque, A. P. Bajaj, W. Gibbs, J. O’Kain, D. Miao, T. Bao,
A. Doupé, Y. Shoshitaishvili, and R. Wang, “Ahoy sailr! there is no
need to dream of c: A compiler-aware structuring algorithm for binary
decompilation,” in Proceedings of the USENIX Security Symposium,
2024.

[9] C. Cifuentes and K. J. Gough, “Decompilation of binary programs,”
Software: Practice and Experience, vol. 25, no. 7, pp. 811–829, 1995.

[10] E. Schulte, J. Ruchti, M. Noonan, D. Ciarletta, and A. Loginov, “Evolv-
ing exact decompilation,” in Workshop on Binary Analysis Research
(BAR), 2018.

[11] J. Lacomis, P. Yin, E. Schwartz, M. Allamanis, C. Le Goues, G. Neubig,
and B. Vasilescu, “Dire: A neural approach to decompiled identifier nam-
ing,” in 2019 34th IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 2019, pp. 628–639.

[12] V. Nitin, A. Saieva, B. Ray, and G. Kaiser, “Direct: A transformer-
based model for decompiled identifier renaming,” in Proceedings of
the 1st Workshop on Natural Language Processing for Programming
(NLP4Prog 2021), 2021, pp. 48–57.

[13] P. Hu, R. Liang, and K. Chen, “Degpt: Optimizing decompiler output
with llm,” in Proceedings 2024 Network and Distributed System Secu-
rity Symposium (2024). https://api. semanticscholar. org/CorpusID, vol.
267622140, 2024.

[14] K. Cho, “Learning phrase representations using rnn encoder-decoder for
statistical machine translation,” arXiv preprint arXiv:1406.1078, 2014.

[15] D. Lawrie, C. Morrell, H. Feild, and D. Binkley, “What’s in a name? a
study of identifiers,” in 14th IEEE international conference on program
comprehension (ICPC’06). IEEE, 2006, pp. 3–12.

[16] D. Votipka, S. Rabin, K. Micinski, J. S. Foster, and M. L. Mazurek, “An
observational investigation of reverse {Engineers’} processes,” in 29th
USENIX Security Symposium (USENIX Security 20), 2020, pp. 1875–
1892.

[17] S. Stapleton, Y. Gambhir, A. LeClair, Z. Eberhart, W. Weimer, K. Leach,
and Y. Huang, “A human study of comprehension and code summariza-
tion,” in Proceedings of the 28th International Conference on Program
Comprehension, 2020, pp. 2–13.

[18] P. Tonella, M. Torchiano, B. Du Bois, and T. Systä, “Empirical studies
in reverse engineering: state of the art and future trends,” Empirical
Software Engineering, vol. 12, pp. 551–571, 2007.

[19] J. Siegmund, N. Peitek, C. Parnin, S. Apel, J. Hofmeister, C. Kästner,
A. Begel, A. Bethmann, and A. Brechmann, “Measuring neural effi-
ciency of program comprehension,” in Proceedings of the 2017 11th
Joint Meeting on Foundations of Software Engineering, 2017, pp. 140–
150.

[20] J. Siegmund, “Program comprehension: Past, present, and future,” in
2016 IEEE 23rd international conference on software analysis, evolu-
tion, and reengineering (SANER), vol. 5. IEEE, 2016, pp. 13–20.

[21] A. Von Mayrhauser and A. M. Vans, “Program comprehension during
software maintenance and evolution,” Computer, vol. 28, no. 8, pp. 44–
55, 1995.

[22] A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung, “An exploratory
study of how developers seek, relate, and collect relevant information

during software maintenance tasks,” IEEE Transactions on software
engineering, vol. 32, no. 12, pp. 971–987, 2006.

[23] N. Pennington, “Stimulus structures and mental representations in expert
comprehension of computer programs,” Cognitive psychology, vol. 19,
no. 3, pp. 295–341, 1987.

[24] V. Arunachalam and W. Sasso, “Cognitive processes in program compre-
hension: An empirical analysis in the context of software reengineering,”
Journal of Systems and Software, vol. 34, no. 3, pp. 177–189, 1996.

[25] F. Détienne, “Expert programming knowledge: A schema based ap-
proach,” Psychology of Programming/Academic Press, 1990.

[26] Y. Cao, R. Zhang, R. Liang, and K. Chen, “Evaluating the effectiveness
of decompilers,” in Proceedings of the 33rd ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis, 2024, pp. 491–502.

[27] Z. Karas, A. Bansal, Y. Zhang, T. Li, C. McMillan, and Y. Huang, “A tale
of two comprehensions? analyzing student programmer attention during
code summarization,” ACM Transactions on Software Engineering and
Methodology, 2024.

[28] D. Roy, S. Fakhoury, and V. Arnaoudova, “Reassessing automatic
evaluation metrics for code summarization tasks,” in Proceedings of the
29th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, 2021, pp.
1105–1116.

[29] E. Shi, Y. Wang, L. Du, J. Chen, S. Han, H. Zhang, D. Zhang, and
H. Sun, “On the evaluation of neural code summarization,” in Proceed-
ings of the 44th international conference on software engineering, 2022,
pp. 1597–1608.

[30] A. Jbara and D. G. Feitelson, “On the effect of code regularity on
comprehension,” in Proceedings of the 22nd international conference
on program comprehension, 2014, pp. 189–200.

[31] Z. P. Fry, B. Landau, and W. Weimer, “A human study of patch
maintainability,” in Proceedings of the 2012 International Symposium
on Software Testing and Analysis, 2012, pp. 177–187.

[32] J. Sillito, G. C. Murphy, and K. De Volder, “Questions programmers ask
during software evolution tasks,” in Proceedings of the 14th ACM SIG-
SOFT international symposium on Foundations of software engineering,
2006, pp. 23–34.

[33] M. J. Pacione, M. Roper, and M. Wood, “A novel software visualisation
model to support software comprehension,” in 11th working conference
on reverse engineering. IEEE, 2004, pp. 70–79.

[34] A. Jaffe, J. Lacomis, E. J. Schwartz, C. Le Goues, and B. Vasilescu,
“Meaningful variable names for decompiled code: A machine trans-
lation approach,” in Proceedings of the 26th Conference on Program
Comprehension, 2018, pp. 20–30.

[35] A. Gelman, Data analysis using regression and multilevel/hierarchical
models. Cambridge university press, 2007.

[36] S. Nakagawa, P. C. Johnson, and H. Schielzeth, “The coefficient of
determination r 2 and intra-class correlation coefficient from generalized
linear mixed-effects models revisited and expanded,” Journal of the
Royal Society Interface, vol. 14, no. 134, p. 20170213, 2017.

[37] K. Charmaz, Constructing grounded theory: A practical guide through
qualitative analysis. sage, 2006.

[38] J. C. De Winter, S. D. Gosling, and J. Potter, “Comparing the pearson
and spearman correlation coefficients across distributions and sample
sizes: A tutorial using simulations and empirical data.” Psychological
methods, vol. 21, no. 3, p. 273, 2016.

[39] L. Yujian and L. Bo, “A normalized levenshtein distance metric,” IEEE
transactions on pattern analysis and machine intelligence, vol. 29, no. 6,
pp. 1091–1095, 2007.

[40] S. Niwattanakul, J. Singthongchai, E. Naenudorn, and S. Wanapu,
“Using of jaccard coefficient for keywords similarity,” in Proceedings of
the international multiconference of engineers and computer scientists,
vol. 1, no. 6, 2013, pp. 380–384.

[41] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method for
automatic evaluation of machine translation,” in Proceedings of the 40th
annual meeting of the Association for Computational Linguistics, 2002,
pp. 311–318.

[42] S. Ren, D. Guo, S. Lu, L. Zhou, S. Liu, D. Tang, N. Sundaresan,
M. Zhou, A. Blanco, and S. Ma, “Codebleu: a method for automatic
evaluation of code synthesis,” arXiv preprint arXiv:2009.10297, 2020.

[43] T. Zhang, V. Kishore, F. Wu, K. Q. Weinberger, and Y. Artzi, “Bertscore:
Evaluating text generation with bert,” arXiv preprint arXiv:1904.09675,
2019.

[44] Q. Chen, J. Lacomis, E. J. Schwartz, G. Neubig, B. Vasilescu, and
C. Le Goues, “VarCLR: Variable semantic representation pre-training

13

Published in the Proceedings of the 2025 IEEE/IFIP International Conference on Dependable Systems and Networks

https://hex-rays.com/decompiler
https://ghidra-sre.org/

via contrastive learning,” in International Conference on Software En-
gineering, ser. ICSE ’22, 2022.

[45] K. L. Gwet, “On the krippendorff’s alpha coefficient,” Manuscript
submitted for publication. Retrieved October, vol. 2, no. 2011, p. 2011,
2011.

[46] Y. Zhang, J. Li, Z. Karas, A. Bansal, T. J.-J. Li, C. McMillan, K. Leach,
and Y. Huang, “Eyetrans: Merging human and machine attention for
neural code summarization,” Proceedings of the ACM on Software
Engineering, vol. 1, no. FSE, pp. 115–136, 2024.

[47] A. Mastropaolo, M. Ciniselli, M. Di Penta, and G. Bavota, “Evaluat-
ing code summarization techniques: A new metric and an empirical
characterization,” in Proceedings of the IEEE/ACM 46th International
Conference on Software Engineering, 2024, pp. 1–13.

14

Published in the Proceedings of the 2025 IEEE/IFIP International Conference on Dependable Systems and Networks

	Introduction
	Related Work
	Program Comprehension
	Comprehension Models in Reverse Engineering
	Evaluation of Decompiled Code Comprehension

	Variable and Type Name Recovery

	Evaluation Methodology
	Study Design
	Code Selection
	Question Formulation
	Experimental Design
	Participants and Recruitment

	Experimental Results
	RQ1: Correctness
	RQ2: Timing
	RQ3: Opinions
	RQ4: Users’ Perception vs. Performance
	RQ5: Do Similarity Metrics Reflect Code Comprehension?

	Discussion
	Threats to Validity
	Key Takeaways
	Data Availability
	Ethical Considerations
	References

