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ABSTRACT
When code is compiled, information is lost, including some of the
structure of the original source code as well as local identifier names.
Existing decompilers can reconstruct much of the original source
code, but typically use meaningless placeholder variables for iden-
tifier names. Using variable names which are more natural in the
given context can make the code much easier to interpret, despite
the fact that variable names have no effect on the execution of the
program. In theory, it is impossible to recover the original identifier
names since that information has been lost. However, most code is
natural: it is highly repetitive and predictable based on the context.
In this paper we propose a technique that assigns variables mean-
ingful names by taking advantage of this naturalness property. We
consider decompiler output to be a noisy distortion of the original
source code, where the original source code is transformed into
the decompiler output. Using this noisy channel model, we apply
standard statistical machine translation approaches to choose natu-
ral identifiers, combining a translation model trained on a parallel
corpus with a language model trained on unmodified C code. We
generate a large parallel corpus from 1.2 TB of C source code ob-
tained fromGitHub. Under the most conservative assumptions, our
technique is still able to recover the original variable names up to
16.2% of the time, which represents a lower bound for performance.
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1 INTRODUCTION
Developers expend a great deal of effort and consideration to select
meaningful variable names, and for good reason. It has been shown
that well-selected variable names make it significantly easier to
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understand code [1, 2]. Identifier names provide context to abstrac-
tions in high-level programming languages such as functions, loops,
and classes, which allows developers to understand the function
of these constructs easier. However, despite the human effort that
goes into making source code readable, e.g., by choosing meaningful
identifier names, much of this readability is lost during compilation:
as high-level abstractions are transformed to low-level sequences
of instructions by a compiler, both the structure of the code and
the carefully-chosen identifiers are lost.

The loss of variable names during compilation is typically not
a concern when the original source is available, but this is not al-
ways the case. Commercial software vendors and malware authors
alike often distribute their software in executable form without
including the original source code. As a result, a class of analysts
known as reverse engineers specialize in reading and understanding
a program’s behavior from its executable to analyze malware [3–5],
discover software vulnerabilities [3, 6, 7], or patch bugs in legacy
software [6, 7]. Historically, reverse engineers were often forced
to “read” executable programs at the assembly code level. More
recently, reverse engineers have been using decompilers, which
attempt to reverse the compilation process by recovering informa-
tion about the original program’s variables, types, functions, and
control flow structure, representing this information in a source
code language such as C.

It is generally accepted that reverse engineers understand de-
compiler output more readily than they do assembly code [4, 6, 7].
Some modern decompilers are even explicitly designed to produce
readable and understandable code [4]. However, significant read-
ability challenges remain. First, decompilers produce code that is
largely not idiomatic of what humans would produce. Decompilers
often transform code originally written using one abstraction into a
different, but semantically identical abstraction. The result is often
not as natural to humans (e.g., struct member references like x.e
may be transformed to array accesses of the corresponding member
offset x[4]). Second, current decompilers make no attempt to re-
cover or suggest meaningful identifier names; instead, they assign
generic variable names, like v1 and v2. We illustrate these chal-
lenges with the example in Figure 1. Comparing the original source
code for function xmlErrMsgStr (Figure 1a) with the HexRays1
decompiler output (Figure 1b), note how the names for variables

1https://www.hex-rays.com
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1 void xmlErrMsgStr(xmlCtxt ctxt , xmlErrs error ,

2 const char *msg , const xmlChar *val ) {

3 if ((ctxt != 0) && (ctxt ->instate == -1))

4 return;

5
6 if (ctxt != 0)

7 ctxt ->errNo = error;

8
9 _raiseError(ctxt , error , msg , val);

10 }

(a) Original source code.
1 int xmlErrMsgStr(uint32 *a1 , int a2 ,

2 const char *a3 , int a4 ) {

3 int v5 ;

4 if ((!a1) || (v5 = a1[43], v5 != -1)) {

5 if (a1)

6 a1[21] = a2;

7 v5 =

8 _raiseError(a1, a2, a3, a4);

9 }

10 return v5;

11 }

(b) Decompiled code, with uninformative variable names.
1 int xmlErrMsgStr(uint32 *ctx , int error ,

2 const char *msg , int val ) {

3 int status ;

4 if ((!ctx ) || (status=ctx[43], status !=-1)) {

5 if (ctx)

6 ctx [21] = error;

7 status =

8 _raiseError(ctx , error , msg , val);

9 }

10 return status;

11 }

(c) Translated code with more natural variable names.

Figure 1: Illustrative example (simplified for presentation).
Variables highlighted are lost during compilation, but re-
covered by our system. Even for v5, highlighted in red , an
extra variable introduced during (de)compilation, our tech-
nique can suggest a more natural name (status).

ctxt, error, msg, and val, highlighted in yellow, are lost during
compilation, becoming a1 through a4.

In this paper, we show that it is possible to recover variable
names in decompiled source code that naturally fit a particular
context. Although it may seem like recovering meaningful identifier
names in decompiled source code is impossible since the original
names are “lost” during the compilation process, recent work [8–12]
has shown that because code is natural [13], i.e., highly repetitive
and predictable based on context, it is possible to assign natural
names to identifiers in programs by learning names that developers
have assigned to code used in similar contexts. Using a similar
naturalness approach, for the example in Figure 1 our technique
produces the names error, msg, val, and ctx (Figure 1c), reflecting
either exactly (the first three) or approximately (the forth) the
original programmer’s intent.

More specifically, our work builds on a line of recent natural-
ness-based tools [9, 10, 12] to recover meaningful variable names
in JavaScript code that has been intentionally mangled by obfus-
cators. Although decompiling a program is not a form of program
obfuscation, the resulting code is similar: in both cases, the man-
gled program is stripped of its original variable names, but it is

structurally and semantically similar to the original. The natural
question we address in this paper, therefore, is whether similar tech-
niques to recover meaningful variable names can be transferred to
the domain of decompilation.

Inspired by JSNaughty [10], we cast the problem of recovering
meaningful variable names in decompiled code as an instance of
the “noisy channel” model used in natural language translation
(e.g., French to English). Consequently, we also base our solution
on statistical machine translation (SMT). SMT is data-driven, using
statistical models of language translation estimated from large,
parallel (i.e., sentence-aligned) corpora of text in the source and
target languages. The key to the successful application of statistical
approaches such as SMT to automated identifier renaming is the
ability to generate arbitrary amounts of parallel training data. For
JavaScript [9, 10, 12] this was possible, since one has access to the
obfuscator (e.g., UglifyJS2) and starting, say, from open-source
code, could produce as many training examples as needed.

We leverage a similar insight here: arbitrary amounts of open-
source (C) code can be compiled and decompiled, as needed. How-
ever, while the JavaScript minification that existing tools deal with
is a simple α-renaming of the original code, rendering the construc-
tion of a line-by-line aligned training corpus trivial, our scenario
is more challenging. Indeed, the process of compiling and decom-
piling does not produce an α-renaming of the original code, which
makes constructing the parallel training corpus a challenge. For
example, as illustrated in Figure 1b, decompilers may generate non-
idiomatic code, as well as extra variables (v5) that do not have a
correspondent in the original source.

Our contributions in this paper are twofold: (1) we show that
it is possible to automatically generate an aligned parallel corpus
between natural C code and decompiled C code, using simple align-
ment heuristics; (2) we train and evaluate an SMT model that can
suggest natural variable names in decompiled C code, based on the
open-source SMT toolkit Moses [14], commonly used in natural
language translation. This demonstrates that SMT techniques can
be used for information recovery in source code even when the
difference between the original and the transformed source code is
more complex than simple α-renaming of variable names.

The rest of this paper is structured as follows. In Section 2 we
provide background on SMT and decompilation, focusing on the
challenges to using SMT to rename variables in this new context.
We outline our approach in Section 3. Section 4 describes the ex-
periments we conducted to validate our approach, including the
accuracy of our novel alignment technique; the accuracy of transla-
tion overall; and the impact of including additional information in
the translation process on renaming results. Section 5 places our
contribution in context with respect to related and prior work. We
conclude in Section 6.

2 BACKGROUND
Our technique uses SMT, or statistical machine translation [15], to
assign meaningful names to variables in decompiled C code. This
section provides background on SMT (Section 2.1) and decompila-
tion (Section 2.2) respectively, focusing on the particular challenges
that apply in our domain.

2https://github.com/mishoo/UglifyJS
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2.1 Statistical Machine Translation
SMT is a technique that translates between two languages by es-
timating statistical models from a large, aligned, bilingual corpus.
SMT was originally developed to translate between natural lan-
guages, but it has since also been adapted to the transformation of
programming languages. For example, attempts have been made to
use SMT to translate between C# and Java [16, 17], generate pseudo-
code from source code [18], improve code completion tools [19],
and reverse the obfuscation of JavaScript programs [10].

In SMT, to translate, e.g., a French sentence f into an English
sentence e , one learns a probability distribution p (e | f ) from an
aligned parallel corpus, and tries to find the most likely translation
by determining the sentence e that maximizes the value of p (e | f ).
In a similar way, we can view a line of code e with natural variable
names as a translation of a line of decompiled code with uninfor-
mative variables f , and use SMT to determine the e that maximizes
p (e | f ).

SMT is based on the noisy channel model, where each phrase in
the source language f is assumed to be a distortion of a phrase in
the target language e (e.g., compiling and decompiling the program).
The model does not explicitly specify the reverse transformation
from f to e , so one cannot directly calculate and maximize p (e | f ).
Instead, using the Bayes theorem, one estimates:

argmax
e

p (e | f ) = argmax
e

p ( f |e )p (e )

p ( f )

= argmax
e

p ( f |e )p (e ) (for a specific f )

This formulation is common in SMT. The two parts of this equa-
tion are known as the language model, p (e ) and the translation
model, p ( f |e ). In our case, we estimate an n-gram language model,
capturing the probability of n-grams occurring in natural C code
(i.e., before compilation and decompilation), from a corpus of such
code. The translation model captures the probability that differ-
ent “phrases” (sequences of tokens, not necessarily consecutive,
within each line) in decompiled code are “translations” of the natu-
ral C code it was produced from, which can be estimated from a
line-by-line-aligned parallel corpus. However, unlike prior work on
JavaScript [10], generating the latter corpus is challenging, since
compilation and decompilation can transform the structure of the
code and even introduce new variables.

2.2 Decompilation and SMT Challenges
A decompiler is a program that takes a compiled program as input
and outputs high-level source code that describes the compiled
program [6]. There are decompilers for a wide variety of compiled
and source languages, but in this paper we focus on executable
to C decompilers [3, 4, 6, 7] due to the ubiquitity and complexity
of executable code. We employ Hex-Rays— a commercial x86 and
x86-64 to C decompiler popular among reverse engineers— as an
exemplar, but our techniques are not specific to Hex-Rays and
should work with any decompiler.

Although C decompilers are generally able to recover some
amount of information about functions, variables, types, and con-
trol flow structure [6], even state of the art decompilers struggle to
produce idiomatic C code. For example, in Figure 1b, Hex-Rays fails
to recover the xmlCtxt structure type and instead represents it as a

pointer to uint32. As a result, Hex-Rays crudely translates accesses
to the structure (e.g., ctxt->instate) into array dereferences (e.g.,
a1[43]) that a human programmer would be unlikely to write.

Unfortunately, as we show in Section 4.3, non-idiomatic decompi-
lation complicates the use of SMT techniques for variable renaming.
As discussed above, it is crucial for statistical approaches like SMT
to have access to a large, parallel, aligned training corpus. Yet, C
source code is not readily aligned with decompiled code (unlike
JavaScript before and after minification), hence special alignment
steps are needed. For example, a natural way to produce such a
parallel corpus would start from the original (human written) C
code, and then α-rename source variables to names similar to those
used by decompilers (e.g., v1, v2, etc.) to create the parallel corpus.
However, because human programmers generally write idiomatic C
code, this α-renamed corpus, while simple to construct, ultimately
contains few examples of how to name variables in non-idiomatic
contexts. This results in an SMT model that is unable to recover
variable names when the decompiler produces non-idiomatic C
code (which is quite often).

An alternative approach to construct a parallel corpus could be
to leverage debugging symbols when available (e.g., when code
was compiled with gcc -g). However, this approach is potentially
unrealistic. Indeed, debug symbols are rarely available in bina-
ries. Moreover, since debug symbols include type information, this
causes decompilers such as Hex-Rays to generate different code
in the presence of complex types when using debug symbols than
it does on ordinary, non-debug executables. This again creates a
mismatch between the decompiled output of our target (non-debug)
binaries and the source language in the corpus.

Overall, we cannot leverage Hex-Rays directly to automatically
populate the original variable names into the decompiler output,
thereby creating a parallel, aligned corpus for training our models.
This motivates a method for aligning the variables in the decompiler
output with those in the original C code in a decompiler-agnostic
way. Such a method allows us to generate an aligned corpus that
is suitable for our application of SMT because it more closely rep-
resents decompiled code. We describe how we construct such an
alignment procedure in the next section.

3 APPROACH
Figure 2 provides a high-level overview of our approach to assign
meaningful names to variables in decompiled C code. The user
decompiles a binary using a decompiler (Hex-Rays in our case).
The decompiled code is then optionally pre-processed with a hash-
renaming optimization (Section 3.3) before being passed to an SMT
tool. As basis for our tool chain we use the off-the-shelf SMT sys-
temMoses [14].Moses automatically estimates the language and
translation models given a sentence-aligned (line-aligned in our
case) parallel corpus [20].Moses then outputs a possible translation
of each line, which we then post-process to extract and assign the
suggested variable names (Section 3.2) in the renamed source code.

The quality of the aligned parallel corpus used by Moses to
generate the language and translation models is central to the per-
formance of our renaming system. A straightforward approach
to generating the training corpus would simply rename the vari-
ables in the original, human-written C code to names that could
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Figure 2: Overview of our technique for renaming variables
in decompiled source code.

Figure 3: Overview of our approach for generating an
aligned parallel corpus.

have been generated by a decompiler, thereby obtaining a parallel,
line-by-line aligned corpus. However, as discussed in Section 2.2,
because decompilation may substantively change the structure of
code compared to its original source, the resulting translationmodel
would perform poorly (since the contexts in which a name appears,
the main ingredient for being able to recover names, would be dif-
ferent between the two corpora). We instead generate a corpus via
a process of alignment.

3.1 Alignment
Training an SMTmodel requires a parallel corpus of aligned content
in the two languages between which the model should translate.
We produce this parallel corpus by relating the variables in the
decompiler output to their correspondents in the original source.
Note that perfect alignment is not always possible: decompil-
ers often generate extra variables that did not exist in the original
source, and often change the code structure with respect to the orig-
inal. Instead, alignment represents our best guess for appropriate
variable names in decompiled code given the original source code.

Figure 3 shows the workflow for generating an aligned corpus.
First, we compile input C source code to executables using the
configuration scripts and Makefiles supplied with each project.3
We decompile these executables using Hex-Rays, which generates
decompiled code. We then use our alignment techniques (discussed
shortly) to map placeholder names in the decompiled code to names
in the original source. Finally we combine this with the decompiled
code, optionally hash-renaming the decompiled code (Section 3.3)
3We use open-source C projects from GitHub; details in Section 4.1.

to form the parallel corpus.Moses uses this corpus to estimate both
the language model and the translation model (see Figure 2).

When designing our alignment algorithm, we experimented with
different combinations of matching strategies and cost heuristics,
finding three different combinations that performed best. We eval-
uated each of these three combinations (denoted A, B, and C) to
choose the best-performing one for our system (Section 4.2).

Each of these alignment algorithms starts by separating the
code into functions. Splitting code into smaller sections makes
the process of alignment computationally tractable, but it limits
recovery to local variables. In our experience the vast majority
of variables are local, but future work should also investigate the
renaming of global variables.

3.1.1 Matching Algorithms. Each of the alignment methods uses
a core algorithm that chooses the best matching of variables be-
tween two functions. These algorithms take as input two lists of
variables and a heuristic for computing the cost of each specific
pairing, and find the set of matches that minimizes the total cost.
Method A treats variable matching as an instance of the assignment
problem, where any variable in one list can be matched with a vari-
able in the other list. We chose to use the Hungarian algorithm [21]
for this approach.

Methods B and C both treat the problem of assigning variable
names in the original source code as an instance of the sequence
alignment problem [22, Section 3.2]. Given two ordered sequences
of symbols and a metric for scoring an alignment between the
two, sequence alignment algorithms find the minimum cost (or
maximum value) alignment between them. Note that unlike the
assignment problem, the ordering of each sequence must be pre-
served. For example, given the sequences ABAB and AAB, a cost
function that assigns a pairing a cost of 0 if matched symbols are
the same character and 2 if they are a different character, and a
penalty of 1 for an unmatched symbol, the alignment

A B A B

A A B

has a cost of 3, while the alignment

A B A B

A A B

has the minimal cost of 1. The sequence alignment problem is com-
mon in biology when aligning multiple DNA or RNA sequences
that are billions of symbols long and may have gaps or extra subse-
quences; as a result, many efficient algorithms have been developed
to address it. Alignment methods B and C both use the Needleman-
Wunsch algorithm [23].

Note that in all cases, the number of variables in the two func-
tions can differ, so the algorithms need to be able to compute the
cost of an unmatched variable, in addition to the cost of a particu-
lar assignment. After parameter tuning, we weigh the cost of an
unmatched variable by 3 for methods A and B and 1 for method C.

3.1.2 Signatures and Cost Functions. We use two heuristics as
cost functions for alignments between variable names in the origi-
nal source code to those in the decompiled code. These heuristics
capture different properties of the variables used in source code.
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1 // ints x and y previously declared

2 x = 1; // Usage Signature: =

3 for (;;){

4 y = x+1; // Usage Signature: {+

5 }

6 f(x,y); // Function Signature: f#1

7 g(y,x); // Function Signature: g#2

8 x = h(y); // Function Signature: h#return

Figure 4: A small code snippet demonstrating usage and
function signatures for the variable x.

Usage Signature. This heuristic penalizes aligned variables that
appear to be used in different ways. Each variable is assigned a usage
signature, or a string of characters that represents the variable’s use
in unary and binary operations, loops, and assignment. Each time a
variable is used, a signature for that usage is generated, consisting of
a character representing the operation, and a sequence of characters
representing the current nesting depth.

As an example, in Figure 4, the uses of x on lines 2 and 8 both
have the signature “=” (where = indicates assignment), and the use of
x on line 4 has the signature “{+” (where the character { represents
one level of loop nesting, and + represents addition). These smaller
signatures are composed to form the variable’s usage signature
(thus, x as used above has the signature “= {+ =”). We then compute
the “distance” between the usage signature of a variable in the
original code and that of a variable in the decompiled code.

Each of A, B, and C uses a different method to compute the dis-
tance between two usage signatures. To illustrate, we will demon-
strate the distance between two strings strA = aabc and strB =
abcd . Method A computes the distance between two strings as the
difference in the number of occurrences of each character in both
strings (i.e., the symmetric difference between the strings treated
as unordered character sets). Since strA has one more a than strB ,
strB has one more d than strA, and both strings have the same
number of bs and cs, the distance between strA and strB is 2.

Methods B and C compute the Levenshtein edit distance (i.e.,
the number of edits required to transform one string into another
string) between the two signatures. Since the second, third, and
fourth characters must be changed in strA to reach strB (changing
a to b, b to c , and c to d respectively), the distance between these
two strings is 3. When method B computes the distance, it considers
each of the smaller signatures as a single unit and computes the
number of smaller sequences that need to be edited. Method C
treats each character in the entire signature as a unit and computes
the distance with respect to single-character edits.

Each of A, B, and C multiply the computed distance between
usage signatures by a coefficient that was found to perform most ef-
fectively via a parameter sweep. The coefficients for usage signature
distance in methods A, B, and C are 1, 1, and 0.1, respectively.

Function Signature. This heuristic prioritizes aligned variables
that are used similarly in function arguments and return values.
We generate a function signature for each variable, which records
the function name and parameter position for that variable. The
function signature also captures whether a variable is used to store
a return value. We then compute the distance between the signature
for the original source code and the decompiled code.

An example of the function signature can be seen in Figure 4.
The use of x as the first parameter in the function f on line 6 has the
signature “f#1”, while its use as the second parameter in the func-
tion g on line 7 has the signature “g#2”. On line 8, x is used to store
the return value of h, and this generates the signature “h#return”.
Thus, the entire function signature of x is “f#1 g#2 h#return”.

Methods A and B use the same distance metric for the function
signature as they use for the usage signature. Method C treats each
function signature as an unordered set of tokens,4 and computes
the symmetric distance between signatures (cf. method A). This
outperformed Levenshtein distance. We hypothesize that this is
because uses in function arguments or return values are salient,
and the extra context provided by ordering is not needed.

As before, each of the methods multiplies the computed distance
between function signatures by a coefficient. We found the best
coefficients for A, B, and C after a parameter sweep to be 5, 2, and
1, respectively.

3.2 SMT for Renaming Variables
To generate a candidate list of renamings given a trained SMTmodel,
the decompiled source code is fed into Moses line-by-line.Moses
returns a list of possible translations for each line. Our process ex-
tracts candidate identifier names from the returned line and stores
them as suggested new names for each source variable. SMT tools
do not have a mechanism for ensuring that the translation of a sin-
gle word is consistent between sentences, since natural languages
do not have the same strict definition of scope as programming
languages do. In other words, the same variable v1 appearing on
multiple lines in the decompiled code may receive different “trans-
lations” from Moses, one for each line. Clearly, only one suggested
renaming should be chosen to avoid breaking the semantic equiva-
lence of the decompiled code compared to the original.

To ensure consistency, we adapt the following strategy. For each
candidate renaming, similarly to JSNaughty [10], we rename all
in-scope instances of the old variable in the current function. We
then select the most-probable renaming across all lines according
to the language model (Section 2.1). This process is repeated inde-
pendently for all variables with at least one candidate renaming,
assuming that all other variables remain unchanged.5

The “translated” version of a program with renamed variables
should be an α-renaming of the variables, i.e., the structure of the
program should otherwise be preserved. Because different natu-
ral languages often have different word orderings, SMT tools like
Moses do not necessarily preserve structure. As such,Moses could
theoretically translate one line of source code into a structurally
different line of code. However, because we want Moses to only
perform α-renaming, we disabled configuration options that allow
structural transformations, and enabled an option that forcesMoses
to preserve the number of tokens during translation. These settings,
together with the way in which we construct the parallel training

4We specify tokens here instead of characters because when computing distances
between signatures we treat function names and the return signature as a single token,
instead of a sequence of characters.
5An alternative approach would be to rename each variable sequentially by greed-
ily selecting the renaming that results in the most likely code sequence given the
renamings that have already been selected. We suggest this for future work.
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corpus (the source and target parts of the corpus are α-renamings of
each other), should ensure the structure of programs is preserved.

3.3 Hash Renaming
Hex-Rays assigns names to variables using a prefix and an in-
dex (e.g., a1 and v5 in Figure 1). These names are merely place-
holders and do not convey any meaningful information by them-
selves. For example, there is no meaningful difference between
for (int v1 = 0; v1 < 10; v1++) and its α-renamed counter-
part for (int v5 = 0; v5 < 10; v5++).

To increase the probability that these two lines (and others like
these) are translated similarly, we can canonicalize variable names.
For example, a simple canonicalization could name all variables
identically (e.g., v). However, this misses an important opportunity
to encode additional context about each variable in its name.We can
accomplish this by replacing each variable use in the decompiled
source with a hash that captures context. We capture three different
kinds of context when generating hashed names:

• Type: The variable is renamed to a hash of its type.
• Argument Position: Variables that are introduced as for-
mal parameters in a function are renamed with a hash of
their argument position. Argument order is generally pre-
served by the compilation process, and Hex-Rays attempts
to recover the original order of arguments in the decompiled
code. However, we do note that argument order may be
changed in the presence of advanced compiler optimizations
(e.g., link time optimizations), though we did not employ
these in our current work.
• Most Informative Line: The variable is renamed to a hash
of the highest-entropy line (i.e., highest information con-
tent) that it appears in, excluding lines with entropy above
a certain threshold because they are unlikely to reappear
in the corpus. The entropy of a line is computed from a
language model that was trained when all variable names
were renamed to a fixed string. This allows us to measure
whether the line itself is “interesting”, regardless of the vari-
able names.

These optional hashing strategies are independent and can be com-
bined arbitrarily. We evaluate the performance of all eight combi-
nations in Section 4.3.

4 EVALUATION
Our goal is to automatically assign meaningful and readable names
to variables in decompiled C code to assist reverse engineers. This
section describes experiments that validate our SMT-based ap-
proach’s success at this task. In Section 4.1, we describe our ex-
perimental setup, including dataset and metrics. Alignment is a
critical element for both generating our parallel corpus and validat-
ing our technique; we proposed a number of alignment procedures
to that end (Section 3.1). In Section 4.2, we evaluate the precision
and recall of each alignment procedure. We use the best-performing
alignment procedure for all subsequent experiments. We measure
how often we can recover the original variable names or an ap-
proximation of them in Section 4.3. We conclude by exploring the
utility of incorporating additional information into our analysis in

Section 4.4, and conversely study the effect of training on a smaller
corpus in Section 4.4.3.

4.1 Experimental setup
4.1.1 Dataset. We generated our training corpus from a large

number of C files sourced from GitHub. We used the GHTor-
rent [24] service to identify 402,925 projects written in C. We
randomly selected 20,225 of these projects, consisting of 1.2 TB
of code and 8.4 billion lines of C, and downloaded them. For each
project, we automatically executed available configure scripts and
then ran make. We added a wrapper around gcc to ensure that
all binaries were compiled with optimizations disabled (-O0). In
total, we automatically compiled 174,383 binaries (note that many
GitHub projects build multiple binaries).

We split the compiled binaries into different sets for training
and testing. We randomly assigned each binary to a training, test,
tuning, or validation set with probability 94%, 3%, 0.5% and 2.5%
respectively. We used the training and tuning sets to generate the
parallel corpora thatMoses uses to estimate its statistical models.
We used the test set to evaluate the system. The validation set was
reserved for various manual testing, alignment heuristics parameter
tuning (see above), and experimentation.

4.1.2 Alignment metrics. We consider alignment to be successful
when it correctly maps a decompiled variable to its corresponding
name in the original code. To establish ground truth for alignment
and therefore be able to evaluate different alignment strategies, we
first compile the original source code with debug symbols. We then
use the Hex-Rays decompiler to generate decompiled source code
from these binaries, which maintains the original variable names
because of the debug symbols. Next we strip the variable names
from this source code and replace them with dummy names (v1, v2,
etc.), consistent with how Hex-Rays would have named them in the
absence of debug symbols. We then attempt to align the variable
names between the original source code and the decompiled source
code containing these dummy names. Finally, we compare each
dummy variable name with the original variable name that we
replaced it with.

This evaluation strategy is reasonable for the alignment proce-
dure, but not for the actual renaming. This is because the types
of contextual differences between code decompiled by Hex-Rays
with and without debugging information, such as type names, are
not components of the heuristics we use for alignment (which we
wanted to keep decompiler-independent). As a result, our align-
ment system should perform equally well on code decompiled with
and without debugging symbols. We use this approximation, which
can be automated, in lieu of a human manual evaluation, which is
prohibitive on a dataset of this size.

4.1.3 Renaming metrics. Unlike when we evaluate our align-
ment techniques, we cannot evaluate our variable renaming ac-
curacy by simply decompiling the program with debug symbols.
This is because the SMT toolchain does use additional information
provided by debugging symbols: we show in Section 4.4 that vari-
able renaming performs better on programs with debug symbols,
presumably because the decompiled output contains better typing
information. Since debug symbols are unlikely to be present in real
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binaries, this approach would be unrealistic. Instead, we simply
assume that the original name identified by our best alignment
method is the correct one, which makes no assumptions about
presence of debug symbols in the binaries. Recall that even though
alignment is not completely accurate, it does represent our best
guess for the correct variable names, and many variables often have
no corresponding name in the original source.

Again, our goal is to suggest meaningful renamings for variable
names in decompiled code, that fit well the context in which the
variables are used. Meaningfulness, or naturalness, is inherently
subjective, and likely depends on a multitude of factors, including
the exact reverse engineering application. To keep the evaluation
tractable, we use proxies for naturalness which can be automated.

We assume that recovering the exact variable name in the origi-
nal source code provides substantial benefit to a reverse engineer.
We consider a renamed variable to be an exact match if it is iden-
tical to the corresponding variable name in the original source
code. Additionally, several studies show that humans work just as
well with abbreviated identifiers as they do with full-word identi-
fiers [25, 26]. We therefore also assume that abbreviated identifiers
(e.g., ctx in place of context) provide a similar level of utility as ex-
act matches. With this in mind, we additionally count approximate
matches, identified by the following rules:

• One variable name is a prefix of the other and at least half
as long. For example, str and string match this rule, but s
and string do not.
• Both variables consist of a sequence of letters followed by
a sequence of numbers, and the non-numeric part of the
names match and constitute at least half of the length of the
longer name. For example, str1 and str2 match this rule,
but v10 and v11 do not.
• Special cases that were manually added by inspecting the
results on the validation set (not used during testing), such
as format and fmt.

Collectively, exact and approximate matches provide a conveniently
automated, but conservative estimate of the utility our renaming
approach provides. However, it is not necessary for a variable name
to even resemble the original name for it to be meaningful or use-
ful. For example, count and quantity are both reasonable names
for a variable holding the number of items in an inventory, but
our metric would not identify these as approximate matches. It is
even theoretically possible that our system could suggest a more
descriptive name than the original programmer provided, if such a
name was used more often in a similar context across a large corpus.
We do not currently count such synonymous names in our results,
but we do outline some concrete examples where we encountered
them during our experiments. A human study would be required
to measure the utility of such matches, but we leave such a study
to future work.

We also note that our approach can likely be considered as a
“do no harm” approach: non-placeholder names should, in theory,
always be preferable to placeholder names, unless there are situa-
tions when the more natural names can cause additional confusion,
which we expect is rare. Human studies are necessary to disen-
tangle these effects, which goes beyond the scope of our current
work.

Table 1: Precision and recall of the three configurations of
alignment parameters described in Section 3.1.

Configuration Precision Recall F Measure

A 86.1% 70.0% .77
B 93.2% 69.4% .80
C 91.3% 72.8% .81

Table 2: Confusion matrix for our chosen alignment tech-
nique. There were 501,711 variables total, of which 333,153
had original names.

Aligned
Positive Negative

Actual Positive 242,471 80,565
Negative 23,097 155,638

4.2 Alignment
Table 1 shows the precision, recall, and F-measure for each of the
three alignment configurations described in Section 3.1. Based on
these results, we selected alignment method C for subsequent cor-
pus generation and evaluation. We chose this configuration because
C has a slightly higher F measure than B, and we found in initial
experiments that a model trained using the corpus generated with
this method recovered more variables.

Table 2 shows more detailed results of configuration C’s per-
formance as a confusion matrix. When using debug symbols, our
ground truth, we were able to detect 333,153 variables out of 501,711
that were aligned between the original and decompiled source code.
Of these variables, our best alignment procedure (C) correctly iden-
tified the corresponding variable 242,471 times, for a recall of 72.8%.
Of the remaining 90,682 variables, the alignment procedure failed
to report any alignment for 80,565 (24.1%) of them, and reported
an incorrect alignment for 10,117 (3.0%). In addition, the alignment
procedure incorrectly aligned 12,920 variables that were introduced
by the decompiler, and thus have no corresponding variable in the
original source code. The incorrect alignments were combined in
the false positive cell of Table 2. This corresponds to a precision of
91.3%.

4.3 Baseline results
Table 3 reports how often our techniques can recover variable
names that are either exact matches or the combination of exact
and approximate matches (as defined in Section 4.1). The No Align-
ment and Alignment columns represent our baseline results. No
Alignment refers to the results produced when we generated the
“foreign” language by α-renaming variables in the original source
code to match the generic variable names produced by Hex-Rays
(i.e., v1 and a1, cf. Section 2.2). In Alignment, we instead generate
our parallel corpus using our alignment technique as described
in Section 3.1. The Hashed Context column describes the type of
context hashed as canonical variable names (Section 3.3). The Exact
column reports the percentage of variable names suggested by the
technique that are identical to the original variable names, while
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Table 3: Percentage of exact and combined (exact + approximate) matches for our renaming technique.

No Alignment Alignment Local Additional Context
Hashed Context Exact Combined Exact Combined Exact Combined Exact Combined

None 5.3% 8.3% 12.1% 15.4% 20.7% 24.0% 26.1% 33.7%
Type 3.2% 5.8% 11.9% 15.4% 20.7% 25.3% 28.6% 37.1%
Entropy 4.3% 6.7% 11.6% 15.1% 21.4% 25.2% 27.6% 34.6%
Arg. Pos. 5.3% 8.1% 12.5% 16.1% 20.9% 25.0% 26.9% 34.9%
Type + Entropy 2.9% 5.0% 11.9% 15.4% 20.8% 24.5% 28.7% 36.0%
Type + Arg. Pos. 4.2% 7.1% 12.7% 16.2% 21.6% 25.5% 28.0% 36.1%
Arg. Pos. + Entropy 4.7% 7.4% 12.7% 15.1% 21.6% 25.0% 27.9% 34.6%
Type + Arg. Pos. + Entropy 3.8% 6.1% 11.8% 15.3% 23.1% 26.5% 28.3% 35.2%

1 my_rc base2_string(base2_handle base2_h ,

2 char* buffer , size_t buffer_size) {/*...*/}

(a) Original source code.

1 my_rc base2_string(base2_handle a1,

2 char* a2, size_t a3) {/*...*/}

(b) Decompiled source code.

1 my_rc base2_string(base2_handle base2_h ,

2 char* buf , size_t len) {/*...*/}

(c) Renamed decompiled code.

Figure 5: Header of a function renamed using our technique.
In this instance base2_h is recovered exactly, buffer is recov-
ered approximately as buf, and buffer_size is not success-
fully recovered.

the Combined column reports both exact and approximate matches
that meet the criteria described above in Section 4.1.

Examples of exact and approximate renamings, in addition to a
failed renaming can be seen in Figure 5. In this example, base2_h
is recovered exactly by our technique, while the variable buffer is
approximately recovered as buf. The system fails to successfully
recover buffer_size, suggesting the name len instead. Note, how-
ever, that len could be considered a reasonable alternative name
for buffer_size in some cases, and is almost certainly a better
choice than a3, the name assigned by Hex-Rays.

As can be seen in the table, usingAlignment to generate a parallel
corpus produces an SMT model that can recover significantly more
variable names than the naïve alternative in all cases. Without ap-
plying contextual hashing, we exactly recover 12.1% of the original
names and a combined 15.4% of the exact and approximate names
when we use Alignment, while we are only able to exactly and
approximately recover 5.3% and 8.3% of the original names, respec-
tively, in the No Alignment experiment. As we explain in Section 2.2,
we attribute the poor performance of the No Alignment configu-
ration to the non-idiomatic constructs that decompilers generate,
and this largely motivates our alignment-based approach. Interest-
ingly, applying contextual hashing increases the performance of
the system under Alignment, but decreases the performance of the
system with No Alignment. In the best case, we are able to recover
12.7% of the original names exactly and 16.2% approximately using

Alignment, while we are only able to recover 5.3% and 8.1% with
No Alignment, respectively.

While the recovery of 16.2% of the names may seem low, recall
that: 1) current decompilers do not attempt to assign any mean-
ingful names to variables;6 2) these numbers are computed under
the most conservative of assumptions; and 3) exact or approximate
recovery is but a proxy for meaningful or naturalness of names. We
believe that providing reverse engineers with even a few meaning-
ful names greatly aids code comprehension and reduces some of the
mental effort involved in the complex task of reverse engineering.
Furthermore we expect that some suggested variable names may
be meaningful and useful even if they do not meet the relatively
strict criteria that we require for an exact or approximate match.

An example of this is shown in Figure 6. Our system suggested
name in place of the original name mapname, which we do not count
as an approximate match even though it provides useful context.
Using the information provided by the identifier name, a reverse
engineer could conclude on line 3 that aasworld is a C struct that
holds the value of name at offset 88, while the format string on line
5 ("maps/%s.aas") provides the rest of the context needed to know
that name holds the name of a map. In contrast, a1, the identifier
assigned by the Hex-Rays decompiler, does not provide the same
useful information.

In addition, we have no automated way of evaluating the names
assigned by the system for decompiler-generated variables that are
not present in the original source code. For example, our system
suggests the name status in Figure 1c, which we believe is an
improvement over the name the decompiler assigned, v5, but this
is not reflected in our numerical results.

4.4 Additional Information
In this section, we explore other ways to improve our technique’s
performance, by using additional contextual information when
suggesting variable names.

4.4.1 Locality. A common use case of decompilers is in the
maintenance of legacy software [6]. For example, a company may
have lost the source code for the latest version of a program, but

6Some decompilers do have rules for assigning reasonable names to very common
identifiers, such as the use of i as a loop iterator, but to our knowledge this is the most
advanced approach currently used.
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1 int AAS_LoadFiles(const char* mapname) {

2 \\...

3 strcpy(aasworld.mapname , mapname );

4 \\...

5 Com_sprintf(aasfile , 64, "maps/%s.aas", mapname );

6 \\...

7 }

(a) Original source code.

1 int AAS_LoadFiles(const char* a1) {

2 \\...

3 strcpy (& aasworld [88], a1);

4 \\...

5 Com_sprintf(aasfile , 64, "maps/%s.aas", a1);

6 \\...

7 }

(b) Decompiled source code.

1 int AAS_LoadFiles(const char* name) {

2 \\...

3 strcpy (& aasworld [88], name);

4 \\...

5 Com_sprintf (&c, 64, "maps/%s.aas", name);

6 \\...

7 }

(c) Renamed decompiled code.

Figure 6: Example of a renaming generated by our technique
that does not match the original name, but still provides
useful context. Note how the function parameter in the re-
named decompiled version was assigned the identifier name,
while the original code used the identifier mapname. This is
a more informative name than a1, which was assigned by
Hex-Rays.

may still possess source code for other software developed by the
same engineers (such as an older version of the same system). By
adding this older code to the training corpus, it should be possible
to improve the performance of our approach by exploiting the
localness of source code [27, 28]. While all human-written source
code is repetitive (i.e., natural), it is even more so when compared
to other source code in the same project, module, or function.

To measure the effect of localness on our renaming technique,
we generated new testing and training sets on a per-function rather
than a per-binary basis. This configuration increases the likelihood
that different functions within a binary will all be assigned to either
the training and testing sets, which simulates additional context
that might be contained in source code written by the same pro-
grammers, for instance.

The Local column in Table 3 describes the results. In short, local-
ity has a positive impact on our ability to recover variable names:
we are able to recover 23.1% of variable names exactly, and a com-
bined 26.5% exactly and approximately, which is an increase of
10.4% and 10.3% respectively. We hypothesize that the increase
in performance is primarily due to the capture of project-specific
identifiers in the language model.

4.4.2 Context. Some decompilers struggle to recover user-defined
types such as xmlCtxt in Figure 1a. However, a variable’s type is
often linked to the purpose and name of the variable. For example,
a variable named count is much more likely to be of type int than
type string. When given access to more accurate type information,
the system should be able to suggest more natural variable names.
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Figure 7: The impact of corpus size on the recovery rate of
our technique.

To test this hypothesis, we compiled binaries with debug symbols
(using gcc -g), which Hex-Rays uses both to name variables and
assign their types. We then stripped the variable names from the
decompiled code, and applied our SMT technique to recover those
names. Training was performed using a corpus generated using the
alignment technique, as in the previous experiments. This allows
for direct comparison between the techniques, isolating the impact
of more accurate types.

The Additional Context column of Table 3 shows the results.
The additional context of accurate types significantly improves our
ability to recover variable names. We are able to recover 28.6% of
variable names exactly and a combined 37.1% exactly and approxi-
mately. Our technique does not require any additional training or
information to take advantage of the additional context provided by
better type information. This means that the technique presented
in this paper is likely to benefit from future improvements that
researchers develop in type recovery.

We do note, however, that these numbers are also likely an upper-
bound on the performance of this technique, and that additional
algorithmic improvements would be required to recover more vari-
able names. Other promising avenues for improvement include
corpus generation with better alignment heuristics, the addition of
boosting techniques to improve classification [29], or moving to
more recent algorithms used in NLP such as neural networks [30].

4.4.3 Amount of Training Data. The corpus size used in the
preceding experiments is quite large; the collection and compilation
of over a terabyte of code is not always practical. We therefore
performed another experiment to evaluate the impact of corpus
size on our results. To perform this experiment, we generated a new
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training set the same size as used in the original evaluation and
then randomly subsampled this training set to create new, smaller
collections of training data. For this evaluation, we use the same
alignment method as in the baseline evaluation, and the Type +
Arg. Pos. contextual hash configuration, since it performed the best
in our original evaluation.

The results of this evaluation are shown in Figure 7. In this
graph, the number of exact matches are represented by the red
dotted line, and the number of combined exact and approximate
matches are represented by the solid blue line. Note that the number
of variable names recovered is not linear and increases rapidly at
small corpus sizes. This suggests that our technique could be useful
even with a much smaller corpus size. With a corpus size an order
of magnitude smaller than the full corpus, we were still able to
recover 6.5% of the original variable names exactly and 9.6% of the
variable names exactly or approximately, as compared to 12.7% and
16.2% respectively when using the full corpus.

5 RELATEDWORK
Our work is closely related to the fields of decompilation and re-
verse engineering. We also adapt and expand on work done on the
application of natural language processing techniques to software
engineering problems.

5.1 Reverse Engineering and Decompilation
Decompilation of executables is a large field, with applications
to malware analysis [3–5], security auditing [3, 6, 7], and main-
tainance of legacy software [6]. Decompilation research stretches
back several decades [6]. Many modern decompilers are based on
the pioneering idea that decompilers should be engineered using
similar design as compilers, with explicit front and back-ends that
are connected by an intermediate language [31]. This shift in de-
sign allowed decompilers to be organized as a series of modular
transformations in which each transformation recovers a different
type of abstraction.

This design has allowed subsequent decompiler research to fo-
cus on improving techniques for one type of abstraction recovery,
rather than the engineering of a decompiler as a whole. For ex-
ample, Phoenix [7] and DREAM [3] both proposed new methods
for recovering control flow structure (e.g., transforming goto state-
ments to while loops). Other decompiler researchers have proposed
new methods for recovering information about types and variable
names [32–34]. Although in this research type recovery and vari-
able recovery go hand in hand, variable recovery is usually limited
in scope to identifying storage locations and the context in which
they are used in executable code. In particular, this existing work
on variable recovery does not attempt to recover meaningful vari-
able names for variables. We hope that this paper will motivate
researchers to includemeaningful names as a component of variable
recovery in the future.

We are not aware of any other work that attempts to recover
variable names in decompiled code. The most closely related work
to ours is the recovery of identifiers in obfuscated JavaScript by JS-
Nice [9], Context2Name [12], and JSNaughty [10]; our technique
is directly inspired by the latter.

5.2 Naturalness of Software
The application of natural language processing techniques to soft-
ware is possible because code is natural. It is well known that short
code sequences are rarely unique [35], and Hindle et al. [13] demon-
strated that statistical language models can be more effective at
capturing regularities in software source code than in natural lan-
guage because of this effect. Allamanis et al. [8] also leveraged this
property to learn coding conventions, and suggest natural identifier
names and formatting in a development environment. This natu-
ralness property has enabled us and other researchers to generate
probabilistic models of source code and apply them to software
engineering problems [36–38].

5.3 Readability
The problem of software readability is also well-studied, and re-
searchers have developed models of software readability that mea-
sure the difficulty of reading and comprehending source code [25,
39, 40]. These models incorporate identifier names as a component,
and more research has shown that careful choice of identifier names
aids in the comprehension of software [1, 2]. Other research has
shown that although identifier names can largely be arbitrary, pro-
grammers carefully choose identifier names to convey meaning to
readers of their code [41]. Readability has inspired research into
techniques for the automated suggestion of method, class, [42] and
unit test [43, 44] names.

6 CONCLUSION
Understanding executable programs without the use of source code
is a significant challenge for reverse engineers. Although modern
decompilers can effectively recover variables, types, and high-level
code structure, they do not recover meaningful variable names,
which are an important component of software readability. Our
results show that meaningful variable recovery is possible by lever-
aging the fact that code is natural. Furthermore, our techniques
for recovering variable names can be applied to the output of any
suitable executable decompiler to improve readability and reduce
the cognitive burden required to comprehend the code.
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