AN INTRODUCTION TO COM, ATL AND THE WINDOWS API THROUGH CREATION OF AN INTERNET EXPLORER BROWSER HELPER OBJECT

Edward Schwartz

Millersville University

ejschwartz@cs.millersville.edu
Stephanie Elzer

Millersville University

elzer@cs.millersville.edu

ABSTRACT

As reliance on the World Wide Web and Web-based technology increases, the ability to add new features and capabilities to existing web browsers becomes a time saving and powerful option for developers. Holding over 80% of web browser market share [1], Internet Explorer is a desirable extension platform, and Browser Helper Objects (BHOs) provide a powerful mechanism for extending the functionality of IE. However, developing BHOs requires familiarity with Windows-specific programming concepts such as COM, ATL and the Windows API. Lack of sufficient documentation from Microsoft and third-party writers to assist developers in creating BHOs further exacerbates the difficulty for non-Windows programmers. In this paper we explain the basic concepts behind COM, ATL and the relevant subset of the Windows API. We will guide the reader through the process of implementing the skeleton of a BHO, paying particular attention to the steps that we found to be the most problematic. We will also make the case that BHOs are a natural fit for accessibility applications, because of their tight integration with the browser.

KEY WORDS

WWW, WINDOWS, ACCESSIBILITY, WEB PROGRAMMING

1. Introduction
The growing popularity of the World Wide Web has led to the need for extendable web browsers that can be customized to include new features. Modern web browsers include a graphical interface for users, as well as built-in support for client-to-server communication protocols, which makes them an attractive development platform for applications not falling under the standard model of web browsing. In addition, many groups of users can benefit from the customization of the standard web browsing experience, such as users with disabilities. There is a clear need for developers to have the ability to extend and add features to existing web browsers.

Because all modern web browsers use different programming APIs for extensions, it is prudent to focus on extending one browser. We chose to focus on Internet Explorer due to its majority market share, despite some drawbacks, such as being practically limited to the Windows platform. Although it is possible to manipulate almost any running application in a Windows environment through use of interprocess subclassing, Microsoft offers a cleaner and simpler option for developers, known as the Browser Helper Object (BHO) [2]. Unfortunately, creating BHOs requires knowledge of the Component Object Model (COM), the Active Template Library (ATL), and portions of the Windows and Internet Explorer API. Microsoft and third party developer websites offer insufficient documentation and code examples regarding the creation of BHOs to assist developers unfamiliar with the details of Windows programming. We hope to remedy this situation in this paper by introducing the relevant concepts of the technologies which are needed to create a BHO, and demonstrating the more difficult aspects of creating a BHO. Since our knowledge of BHOs was gleaned during the process of developing an interface to facilitate access to the content of bar charts for blind users [3], we will also include information that we believe to be particularly relevant for developing accessibility applications for the visually impaired.

2. Technologies Used in BHOs

A working knowledge of the Component Object Model, the Advanced Template Library and the Windows API is necessary to be able to create a useful BHO. Each of these pieces is discussed in more detail in the following sections.

2.1 Component Object Model (COM)
COM is a specification that allows for the creation of language-independent objects that are designed to facilitate the reuse of code [4]. Unlike inheritance, COM does not require having access to source code in order to be able to reuse code. To accomplish this binary code reuse, interfaces are defined that describe groups of methods that may be available from an object. COM Objects then implement the methods of one or more interfaces to support particular functionality.

In general, there are two ways that COM will be used in a BHO. The BHO will implement and expose certain interfaces so that Internet Explorer is able to call methods contained in the BHO. For the purposes of this paper, these interfaces will be called server interfaces, because they are providing a service from the perspective of the BHO. Conversely, the BHO will also make calls to interfaces that Internet Explorer has implemented and exposed. These interfaces will be referred to as client interfaces.

Every COM object must implement a base interface known as the IUnknown interface. In addition, BHOs must implement several other housekeeping interfaces in order to interface with Internet Explorer. Implementing some of these base interfaces is a repetitive and tedious task which can be avoided through use of the Advanced Template Library (ATL), which will be discussed in Section 2.2. Thus, we will not discuss the implementation or rationale for most of these interfaces, as they are not highly visible when using ATL.

Although ATL will automatically handle many aspects of COM that a programmer would traditionally manage, it is particularly important to be familiar with several COM basics, such as GUIDs and HRESULTs, to be able to debug simple problems.

Rather than identifying particular interfaces by name, COM identifies them by a 128-bit number known as a Globally Unique Identifier (GUID). GUIDs serve multiple purposes, and when used to designate a COM interface they are called Interface IDs, or IIDs. When a GUID is used to reference a COM class (or implementation), it is known as a Class ID, or CLSID. Before accessing an interface, the corresponding IID must be available in memory. Although much of the Windows API exports relevant IIDs in header files, in some cases one must manually insert them into the BHO source code, such as when using the ITextRange interface.

COM always uses the return value of a function to indicate the success of the call. All COM methods will return a HRESULT, a 32-bit number that encodes information about whether the call succeeded or failed, as well as detailed information about why it did so. In most cases, it is sufficient to test only for success or failure. COM provides two macros for this, as seen in Figure 1.

[image: image1]

[image: image2]
COM’s usage in a BHO is fairly straightforward. Every time a new Internet Explorer window is opened, a new instance of the BHO COM object will be created for that window. Internet Explorer will call various methods on the BHO when the BHO is loaded. The BHO, once loaded, can request Internet Explorer to call a method in the BHO to signal when certain events have occurred, such as when a web page has finished loading.

The BHO also calls methods on the interfaces that Internet Explorer exposes to obtain information about the web browser instance, as well as to access the entire document object model (DOM) of the current document. Access to the DOM allows the BHO to obtain information about the text, images and other objects in the current document, as well as modify them.

2.2 Advanced Template Library (ATL)
According to Microsoft, “The Active Template Library (ATL) is a set of template-based C++ classes that let you create small, fast Component Object Model (COM) objects” [5]. ATL greatly simplifies the implementation of server interfaces by eliminating much of the housekeeping work, such as implementing interfaces that generally remain the same between implementations, and reference counting. This is accomplished by implementing features transparently through C++ templates which are then inherited into the final COM object. Constructing a COM object by hand using ATL requires a detailed knowledge of both COM and ATL, and a great deal of time. However, Visual Studio’s project wizard can generate a skeleton ATL project which inherits from all the proper templates. This allows a BHO developer to implement server interfaces without a detailed knowledge of COM and ATL.

Accessing client interfaces is also simplified when using ATL. Before calling a method on an interface, an interface pointer must be opened to that interface. ATL contains a template class, CComQIPtr, which makes this process extremely simple, as shown in Figure 2.

[image: image3]
2Figure
In the preceding example, an IUnknown interface pointer to an object was given as input. Interface pointers are generally delivered as an IUnknown or IDispatch interface pointer. In the example, an empty interface pointer to IExample is created, and is assigned to the interface pointer given as input. Assuming the input object supports the IExample interface, the IExample interface pointer can then be used to call methods that are part of the IExample interface.

One important precondition for using CComQIPtr is that the proper IID must be accessible in the current scope under the name IID_IName. For instance, in Figure 2, IID_IExample must exist in the current scope and contain IExample’s IID.

2.3 COM Interfaces
A number of server interfaces must be implemented by the BHO for Internet Explorer to be able to load it and communicate with it.

2.3.1 IUnknown
As previously mentioned, IUnknown is the base interface that all COM objects must implement. Once an IUnknown object has been obtained, an interface pointer to any other interface that the object exposes can also be obtained.

2.3.2 IDispatch
Standard COM development depends on the client program having access to the server’s interface definitions at compile time. However, clients may need to access methods on objects without having knowledge of these definitions beforehand. Accessing COM objects exposed by scripting is one example of this situation.

The IDispatch interface allows clients to use interfaces that are unknown at compile time. The skeleton BHO will implement several event handlers using the IDispatch interface, which Internet Explorer will call using the Invoke method. The usage of IDispatch allows BHOs to handle events in versions of Internet Explorer created after the BHO was compiled.
2.3.3 IObjectWithSite
IObjectWithSite allows Internet Explorer to call a method exposed by the BHO with an interface pointer to its COM object. The skeleton BHO will implement the SetSite method which stores Internet Explorer’s IUnknown interface pointer and creates interface pointers to IWebBrowser2 and IConnectionPointContainer.
The BHO also utilizes a number of client interfaces to make requests to Internet Explorer.

2.3.4 IWebBrowser2
IWebBrowser2 represents an instance of Internet Explorer, and allows the BHO to discover or change many aspects of the browser. IWebBrowser2 is used in the skeleton BHO to access the current document object model. The DOM of an HTML document can be explored using the IHTMLDocument2 interface and its helper interfaces. The skeleton BHO retrieves an IHTMLElementCollection of all images present on the page from the document interface. Finally, using the IHTMLImgElement interface, the sample BHO iterates through the element collection and accesses information about each image. Multitudes of helper interfaces exist for BHOs and scripts to be able to access and modify the various objects in the DOM. These interfaces are well documented on the Microsoft Software Developer’s Network web site.

2.3.5 IConnectionPointContainer

COM objects that fire events, such as Internet Explorer’s object, usually implement IConnectionPointContainer. The sample BHO will use this interface to request that IE send event notifications for a given set of events to the IDispatch interface previously discussed.

2.4 Keyboard Combinations
Most BHOs require some type of user interface, particularly if the BHO is to be activated by the user. Contextual menus, toolbars containing buttons, and keyboard combinations (or keyboard combos) are methods often used for this function. Contextual menus and buttons are difficult for visually impaired users to activate without the use of screen reading software, since they are inherently visual and require knowledge of where the cursor is located on the screen. However, even with the use of screen reading software, navigating through menu items or buttons can be a cumbersome process for a visually impaired user. Therefore, we decided to use a keyboard combination as a trigger, as it allows visually impaired users to easily and quickly signal the BHO to activate.

In Windows programming, there are three different methods to bind to a keyboard combination: hot keys, keyboard accelerators, and keyboard hooks.

A hot key is a key combination that will trigger a message whenever the combination is pressed, regardless of whatever application has the system’s focus. The sample BHO should only be activated when the corresponding Internet Explorer window has the system’s focus, so hot keys are not an appropriate solution.

Keyboard accelerators are key combinations that are typically used as an alternative to selecting a menu item, but can be used without one. It is possible that a BHO could modify the function that listens for particular key combinations to include additional combinations, but no previous evidence of this could be found.

However, several groups reported success using keyboard hooks to search for key combinations [6], which is what we chose to implement. Keyboard hooks call a provided call-back function for every keystroke pressed and released on the system, and can be limited in scope to a certain thread. The skeleton BHO will use this feature to limit the hook to a particular thread, and thus will create a new keyboard hook for each Internet Explorer window.

Using a call-back function with a BHO presents a problem: BHOs are implemented as classes, and C++ function pointers can only reference static member functions of classes [7]. Static member functions cannot access the non-static data members directly, which contain essential information, such as the pointer interfaces to Internet Explorer’s COM objects. The solution to this problem, although not obvious, is very simple. A static map is created in the BHO class which maps a thread’s ID to a given instantiation of the BHO. When the call-back function detects the designated key combination, it will search the map by its thread id. After it obtains a pointer to the corresponding BHO instantiation, it calls a non-static member function in the BHO which contains the code that should be activated by the key combination.

2.5 Debugging
Debugging is more complicated in a BHO, as there is no access to the console. However, debugging information can be sent to the Visual Studio debug pane by calling the ATLTRACE2 macro. Message boxes such as the one called in Figure 6 can also be used for debugging purposes.

2.6 Alternate Technologies

Microsoft’s .NET framework allows developers to use extensive pre-built libraries and objects for rapid development of common programming tasks. Although this may sound similar to ATL’s purpose, .NET has increased greatly in popularity due to its simplicity. A developer might be tempted to use a .NET solution to extend Internet Explorer with the notion of saving time and effort. However, extending Internet Explorer in .NET still requires the creation of a BHO and utilizing Internet Explorer’s COM interfaces. However, .NET does have a significant advantage in the natural COM interoperability built in to the C# language. [8]
3. A Skeleton BHO

In this section, we will create a skeleton BHO that demonstrates all of the described technologies, and show example implementations of difficult to implement components. A perfect candidate for implementation as a BHO is an accessibility modification. Accessibility software needs access to web documents and requires a user interface, but it would be extremely wasteful to create a new browser and interface specifically for accessibility purposes. It would also put its users at a disadvantage since they could not use a popular and well-supported web browser. The tight integration of BHOs and the web browser also allows for a seamless user interface where the BHO can be launched by keystroke, which is particularly useful for blind users.

In our example, the user can select an image in the browser and then enter a keystroke to launch the BHO. We do not provide code for the action that takes place after this, although the selected image can be run through an external system to produce textual output. The output will be displayed in a dialog box inside of Internet Explorer.

The following instructions assume the use of Microsoft Visual Studio 2005, although they will be generalized as much as possible.

3.1 Creating a BHO Project

Create a new project by selecting ‘New Project’ from the File menu. Choose ‘ATL Project’ in the dialog that opens to create a skeleton ATL project. Name the project SampleBHO. A wizard will ask for details about the ATL project. The default settings create a DLL file, which is the required choice for a BHO. The generated skeleton project includes code to load and unload the DLL file, and little else. A class must be added to the project before it will be a COM object.

Select ‘Add Class’ from the Project menu, and choose to add an ‘ATL Control’ to the project. A dialog will prompt for more details. Give the class a short name of ‘BHO’. Visual Studio will name several files and classes based on the short name entered. The remaining default values are acceptable, with the exception of supported interfaces; the IObjectWithSite interface must be supported.

At this initial stage, there are already many files in the project. Most of the additions will be in BHO.h, which contains the source code for the COM object, which Visual Studio named CBHO based on the short name supplied earlier.

Like any other class, the CBHO class contains data members and methods. The BHO will require several data objects to be stored in each instance of the BHO, so the following must be added to the private area of the CBHO class: interface pointers to Internet Explorer’s IWebBrowser2 and IConnectionPointContainer interfaces, a handle to the keyboard hook, and a string for the system’s temporary directory. Although they will not be defined yet, the static map needed for the keyboard hook’s call-back function and reference to the output dialog will also be included (but commented out). Figure 3 shows the preliminary data members that should be added to CBHO.

[image: image4]
3Figure : Private Area of CBHO

3.2 BHO Initialization
BHOs are registered to be loaded into Internet Explorer or Windows Explorer through the use of a key in the Windows Registry. A key named with the CLSID of the BHO is inserted into the registry at location HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\Browser Helper Objects. This registry key could be created manually by the developer using a tool such as Regedit, but Visual Studio provides an automatic way to modify the registry appropriately every time the project is built through use of registrar script code (RGS). The benefit to this approach is that should the project be transported to another machine, the appropriate registry modifications will automatically be performed.
Before creating the appropriate RGS, the CLSID of the BHO must be located. The CLSID can be found in the SampleBHO.idl file. It is located in the SampleBHOLib context, and is defined using the uuid() statement. The CLSID is the dashed hex number inside the parenthesis of the uuid statement. The CLSID generated for this paper’s BHO was 635641DD-5E18-46A6-94D5-F7C4B49A09C2. However, the CLSID for any other BHO, even if given the same name, will be different.

The RGS code for registering the BHO should be placed into BHO.rgs. Visual Studio’s wizards have already supplied the code to register the BHO’s COM object. The RGS code for registering the BHO, shown in Figure 4, should be inserted above or below the existing code. The proper CLSID should be substituted, and the CLSID should remain on one line.

 SHAPE * MERGEFORMAT

4Figure : Registration Code
When the project is run, the proper entries to load the BHO will be in place and both Internet Explorer and Windows Explorer will load the BHO whenever a new window is opened. However, most BHOs, including our skeleton BHO, are only useful when run in Internet Explorer. An explicit check to prevent Windows Explorer from loading the BHO, as shown in Figure 5, must be added between the hInstance and return statements, in the DllMain function located in BHOSample.cpp.

[image: image6]
Figure 5: Windows Explorer check [2]
At this point, the project can be built and run. Pressing F5 will create a debugging build of the project. After the project is built for the first time, a dialog will ask for the debugging executable. The full path to Internet Explorer should be set in the executable file name field (usually C:\Program Files\Internet Explorer\IEXPLORE.EXE).

In order to complete the initialization of the BHO, the SetSite method must be implemented inside of CBHO as a public member function to save the IWebBrowser2 interface pointer and set up a connection point.
 Once the BHO is built and run, Internet Explorer should open a message box before opening the main browser window to verify that the BHO is being loaded properly.

[image: image7]
Figure 6: SetSite

3.3 Handling Events
After successful execution of the Advise method in SetSite, Internet Explorer will attempt to call the Invoke method on the IDispatch interface. The Invoke method must be implemented and will distinguish between different event types through the use of the dispipMember parameter. Documentation on the event types and interfaces used to navigate the DOM can be found on Microsoft’s MSDN website. Figure 7 shows an example Invoke implementation that will add a tab index to every image whenever a document completes loading.
 This will allow a user to tab to the desired image to select it (and eventually activate the BHO with a keyboard combination).

The sample Invoke code should be added to the public section of CBHO. It obtains a collection of the images in the document, and then iterates through each image. It first obtains an IDispatch interface to each image object, which it subsequently uses to access the IHTMLImgElement interface. From that interface, it modifies the tab index and obtains the image’s source address (for example only).

3.4 Activating on a Keyboard Combination
Before creating a keyboard hook, a map between threads and BHO instances must be created, as described in subsection 2.4. The data types for threads and BHO instances are, respectively, DWORD and CBHO*. Thus, Figure 8 shows the typedef required for ThreadListType, which should be inserted above the CBHO definition in BHO.h.

[image: image8]
Figure 8: Thread List Type

At this point, the ThreadList can be uncommented from Figure 3. Because ThreadList is declared as a static, every instance of the BHO will be able to add and remove a map to itself. The code in Figure 9 should be included in CBHO’s constructor. Corresponding code to remove the entry from the map, and destroy the keyboard hook should be included in CBHO’s destructor.

[image: image9]
Figure 9: Keyboard Hook Setup
This example uses CBHO::KeyFilter as the callback function for the keyboard hook. This static function will be called every time a keyboard event occurs in the BHO’s thread.

The lParam argument of KeyFilter, as shown in Figure 10, contains a number of binary flags about the incoming message. The 31st bit will be zero when a key is being pressed, as opposed to being released. The wParam argument contains the virtual key code of the key being pressed. The virtual key code 0x5A represents the Z key. The GetKeyState function returns a negative value if the supplied key is already pressed down. Thus, the if statement in Figure 10 will only be true if the key combination Control + Z is being pressed. At that point, the BHO instance is determined and the non-static Activate method is called. It is important to send the message to the next hook if this filter does not handle it, by using CallNextHookEx.

[image: image10] Figure 10: Keyboard Hook Callback Function, Adapted from [6]
3.5 Locating an Image
After being activated by a user, the BHO has to locate the image that has the system’s focus. The IHTMLElement that has the system focus can be retrieved by calling the get_activeElement method of the IHTMLDocument2. The element returned sometimes contains the image (as opposed to being the image element itself), so the best way to find the image is to iterate through all the images in the document as demonstrated in Figure 7. The contains method of the focused element is called for each image, and will return true if the image is contained in that element. After the correct IHTMLImgElement is located, the image can be processed using internal code or an external system. For example, images could be run through an optical character recognition (OCR) system to extract any machine readable text from images.

3.6 Displaying Output
After processing the image, the output must be conveyed to the user in some fashion. The best way to display text output so that it can be accessed through a screen reader is through the use of a dialog window. A dialog window allows for more flexibility than a message box, and does not disturb the original document.

To create such a dialog, a new ATL Dialog class with a short name of Dlg should be added to the project by choosing ‘New Class’ from the Project menu. Double clicking on SampleBHO.rc in solution explorer will open the project’s resource file. The dialog layout can be opened by expanding the Dialog subtree and double clicking on IDD_DLG. The cancel button should be removed, as there is no use for it. An edit control should be added to display the output text. The disabled property on the edit control should be set to true to prevent users from changing the text. (The property editor can be found by right clicking on the control and selecting Properties) The edit control’s ID will be needed to modify the text. Other properties, such as Topmost, may be appropriate for the dialog itself.

To create the dialog in the code, first uncomment the line pertaining to the dialog in Figure 3. Then add the code shown in Figure 11 to CBHO’s constructor. A call to m_pOutputWnd’s DestroyWindow method and the deletion of the class instance should also be added to CBHO’s destructor. Figure 12 demonstrates how to display the window, and Figure 13 shows how to modify the text in the edit control.

[image: image11]
Figure 11: Window Creation

[image: image12]
Figure 12: Display Window

[image: image13]
Figure 13: Modifying the Text in the Edit Control
3.7 Skeleton BHO Summary
At this point, the skeleton functionality of the BHO is complete. The project can be compiled and run, and when Internet Explorer is started, a message box will indicate that the BHO is being loaded. A user can select a graphic on a web page in two ways: 1) they can use the tab key to cycle through all of the graphics on the web page, or 2) they can navigate through the web page using a screen reader, and then use the screen reader to set the system’s focus on the desired graphic.
 Once the graphic is selected, pressing Control+Z will activate the BHO. The BHO will process the image and produce a textual output, which will be displayed in a dialog. If screen reading software is running, it will read the textual output out loud. The entire process of using the BHO is accessible, simple and practical for users with or without a visual impairment.
4. Conclusion

Browser Helper Objects are well suited for seamlessly extending the functionality of the browser. The tight integration of BHOs into Internet Explorer as COM objects allows for efficient access from the BHO to many powerful interfaces in IE. The skeleton BHO code examples provided demonstrate that BHOs are particularly well suited for accessibility applications, as they can systematically access and alter the document object model, and seamlessly integrate with IE’s user interface. The COM interfaces provided from IE allow for even more possibilities, including customization of the web browser interface itself.

We have shown in this paper and through our previous work [3] in creating an accessible interface to Internet Explorer that BHOs are indeed a viable solution to extend the browser for accessibility purposes. However, we believe that BHOs are also useful for a broader domain of applications as well, given the flexibility of the COM interfaces exposed by IE. This potential for diverse types of applications combined with the difficulty of manipulating several layers of programming libraries is the inspiration for this paper.

This paper is intended to serve as a starting place for aspiring BHO developers without windows programming experience. The disparate documentation from Microsoft and third parties has been amalgamated such that developers should be able to get an introduction to the technologies that they must learn in further detail. Although we show several code examples of a skeleton BHO, they are intended only to be partially understood after reading this paper, since space limitations prohibited the explanation of some of the concepts utilized in the provided code (such as variants). However, the information contained in this paper provides a consolidated introduction to the concepts utilized in constructing powerful and useful BHOs that extend the capabilities of Internet Explorer in novel ways.

5. References
[1] Microsoft’s Internet Explorer global usage share is 85.85 percent. Onestat.

http://www.onestat.com/ [29 January 2007]

[2] D. Esposito, Browser Helper Objects: The Browser the Way You Want It. MSDN Library. http://msdn.microsoft.com [29 January 2007]
[3] S. Elzer, E. Schwartz, et. al, A Browser Extension for Providing Visually Impaired Users Access to the Content of Bar Charts on the Web. Proc. 3rd WEBIST Conf. on Web Information Systems and Technologies, Barcelona, Spain, 2007.
[4] D. Box, Essential COM (Boston, MA: Addison-Wesley, 1997).

[5] Introduction to ATL. MSDN Library. http://msdn.microsoft.com [29 January 2007]

[6] N. Strite, D. Carrington, G. Hogan, D. Piepenbrink, & D. Wash, Developers Manual. http://slappy.cs.uiuc.edu/fall03/team2/Final/

[29 January 2007]

[7] P. Philippot, Web Highlighter – Where Did I Read That? PC Magazine, April 9 2002 Issue.
[8] M. Bustamante, 15 Seconds. http://www.15seconds.com/issue/040331.htm [30 January 2007]

[image: image14]
Figure 7: Event Handler

// Will be set to 1 for

// successful completion, and

// 0 for failed completion

bool success;

HRESULT hr;

// The HRESULT is returned

//when calling the method

hr = callMethod(…);

if (SUCCEEDED(hr))

 success = 1;

if (FAILED(hr))

 success = 0;

Figure � SEQ Figure * ARABIC �1�

// Given unknownPtr as an

// IUnknown pointer

CComQIPtr<IExample> xmpPtr;

HRESULT hr;

xmpPtr = unknownPtr;

// Verify the new pointer is active. // If not, unknownPtr does not provide

// the IExample interface.

if(!xmpPtr) return S_OK;

// Call the example method

hr = xmpPtr->xmpMethod();

// Verify that the call did

// not fail

if(FAILED(hr)) return S_OK;

// Done

private:

// Pointer to IE’s IWebBrowser2

CComQIPtr<IWebBrowser2> m_spWebBrowser2;

// Pointer to IE’s ICPC

CComQIPtr<IConnectionPointContainer> m_spCPC;

// Cookie to identify connection

DWORD m_dwCookie;

// Handle for keyboard hook

HHOOK m_hKeyHook;

// Static map for keyboard hook

//static ThreadListType ThreadList;

// Dialog Instance

//CDlg *m_pOutputWnd;

HKLM {

SOFTWARE {

Microsoft {

Windows {

CurrentVersion {

Explorer {

'Browser Helper Objects' {

ForceRemove {1E41394B-321A-4EED-A446-A1C3E7A41F4B} } } } } } } }

if (dwReason == DLL_PROCESS_ATTACH)

{

TCHAR pszLoader[MAX_PATH];

GetModuleFileName(NULL, pszLoader, \

 MAX_PATH);

_tcslwr(pszLoader);

if (_tcsstr(pszLoader, _T("explorer.exe")))

 return FALSE; // Abort loading

}

STDMETHOD(SetSite)(IUnknown *pUnkSite)

{

 // Store IWebBrowser2 pointer

 m_spWebBrowser2 = pUnkSite;

 // Store Connection point pointer

 m_spCPC = m_spWebBrowser2;

 // Connect to container for events

 CComQIPtr<IConnectionPoint> spCP;

 // Receives the specific connection

 m_spCPC->FindConnectionPoint \

 (DIID_DWebBrowserEvents2, &spCP);

 // Pass our event handlers to the

 //container.

 spCP->Advise(\

 reinterpret_cast<IDispatch*>(this), \

 &m_dwCookie);

 MessageBox(_T("BHO loaded"), \

 _T("BHO loaded"),MB_OK);

 return S_OK;

}

class CBHO;

typedef map<DWORD, CBHO*> \

 ThreadListType;

ThreadList.insert(\

 ThreadListType::value_type(\

 GetCurrentThreadId(), this));

m_hKeyHook = SetWindowsHookEx(\

 WH_KEYBOARD, // Keyboard hook \

 (HOOKPROC) // Callback function \

 (CBHO::KeyFilter),

 NULL, //Thread-local hook \

 GetCurrentThreadId()); \

 // Specify thread \

ThreadListType CBHO::ThreadList;

LRESULT CALLBACK CBHO::KeyFilter(\

int nCode, WORD wParam, DWORD lParam)

{

 CBHO* m_pControl;

 if((lParam & 0xc0000000) == 0 \

 && wParam == 0x5A \

 && ::GetKeyState(VK_CONTROL) \

 < 0)

 {

 ThreadListType::iterator ThreadIt;

 ThreadIt = \

 ThreadList.find(\

 GetCurrentThreadId());

 m_pControl = \

 (*ThreadIt).second;

 m_pControl->Activate();

 return 1;

 } else

 {

 return

 CallNextHookEx(

 m_pControl->m_hKeyHook, nCode, \

 wParam, lParam);

 }

}

m_pOutputWnd = new CDlg();

m_pOutputWnd->Create(\

 GetDesktopWindow());

m_pSpeakWnd->ShowWindow(\

 SW_SHOWNORMAL);

HWND hWndEditBox = \

 m_pSpeakWnd->GetDlgItem(IDC_EDIT1);

::SendMessage(hWndEditBox, \

 WM_SETTEXT, 0, (LPARAM)_T("Text"));

STDMETHOD(Invoke)(DISPID dispidMember, REFIID riid, LCID lcid, WORD wFlags, DISPPARAMS* pDispParams, VARIANT* pvarResult, EXCEPINFO* pExcepInfo, UINT* puArgErr)

{

 HRESULT hr;

 if (dispidMember == DISPID_DOCUMENTCOMPLETE) {

 CComQIPtr<IDispatch> pDisp;

 hr = m_spWebBrowser2->get_Document(&pDisp); // Retrieve interface pointer to

 // current document

 CComQIPtr<IHTMLDocument2> spHTML;

 spHTML = pDisp;

 if (!spHTML) continue; // Only proceed if the current document is an HTML document

 CComQIPtr<IHTMLElementCollection> spImgCollection;

 hr = spHTML->get_images(&spImgCollection); // Retrieve a collection of all images

 long plItems = 0;

 spImgCollection->get_length(&plItems);

 for (int i = 0; i < plItems; i++)

 {		

 CComQIPtr<IDispatch>;	

 CComQIPtr<IHTMLImgElement> spImgElement; 			

 CComQIPtr<IHTMLElement> spElement;

 const BSTR stabIndex = "tabIndex";

 _variant_t vtabIndex;

 _variant_t index = i;

 BSTR src;

 hr = spImgCollection->item(index, index, &spImgElementDisp); // Request image

 spElement = spImgElementDisp;

 spImgElement = spImgElementDisp;

 hr = spImgElement->get_src(&src); // Retrieve source address

 spElement->setAttribute(stabIndex, _variant_t(0), 1); // Force the tab index to 0

 }

 }

 return S_OK;

}

� Formatting concessions were made in this figure and others to conserve space.

� The HRESULT should be stored and handled for most of these calls in the final implementation.

� The example code does not check for existing tab indexes. Production code should only add a tab index if one cannot be already found.

� In JAWS, this is known as moving the PC cursor to the JAWS cursor.

