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Abstract
Decompilation is an important part of analyzing threats in
computer security. Unfortunately, decompiled code contains
less information than the corresponding original source code,
which makes understanding it more difficult for the reverse
engineers who manually perform threat analysis. Thus, the
fidelity of decompiled code to the original source code mat-
ters, as it can influence reverse engineers’ productivity. There
is some existing work in predicting some of the missing in-
formation using statistical methods, but these focus largely
on variable names and variable types. In this work, we more
holistically evaluate decompiler output from C-language exe-
cutables and use our findings to inform directions for future
decompiler development. More specifically, we use open-
coding techniques to identify defects in decompiled code
beyond missing names and types. To ensure that our study is
robust, we compare and evaluate four different decompilers.
Using thematic analysis, we build a taxonomy of decompiler
defects. Using this taxonomy to reason about classes of issues,
we suggest specific approaches that can be used to mitigate
fidelity issues in decompiled code.

1 Introduction

Decompilation—the process of analyzing a compiled pro-
gram and recovering a source-code program that portrays
the same behavior—is a crucial tool in computer security, as
it allows security practitioners to more quickly gain a deep
understanding of the behavior of compiled programs. This
is particularly useful in security scenarios such as analyz-
ing malware and commercial-off-the-shell software (COTS),
where the source code may be unavailable. By converting
executables into human-readable C-like code, decompilation
allows security practitioners to more effectively understand
and respond to the threats posed by malware [36]. An example
of this can be seen in the study by Ďurfina et al. [43], where
analysts employed a decompiler to analyze the Psyb0t worm,
a piece of malware that infects routers to build a botnet.

Original

1 void cbor_encoder_init(CborEncoder *encoder, uint8_t
*buffer, size_t size, int flags)

2 {
3 encoder->ptr = buffer;
4 encoder->end = buffer + size;
5 encoder->added = 0;
6 encoder->flags = flags;
7 }

Decompiled

1 long long cbor_encoder_init(long long a1, long long
a2, long long a3, int a4)

2 {
3 long long result;
4 *((_QWORD *) a1) = a2;
5 *((_QWORD *) (a1 + 8)) = a3 + a2;
6 *((_QWORD *) (a1 + 16)) = 0LL;
7 result = a1;
8 *((_DWORD *) (a1 + 24)) = a4;
9 return result;
10 }

Figure 1: A decompiled function and its original source defi-
nition. Decompilers cannot recover many of the abstractions
that make source code readily readable by human develop-
ers. Furthermore, they may incorrectly recover semantics, as
demonstrated by the decompiled function’s extra return state-
ment.

Analyzing and understanding the behavior of executable
code is significantly more difficult than analyzing source code
due to information that is removed by the compilation pro-
cess. Indeed, while high-level programming languages con-
tain abstractions and constructs such as variable names, types,
comments, and control-flow structures that make it easier
for humans to write and understand code [34], executable
programs do not. These abstractions are not necessary for
an executable program to run, and thus they are discarded,
simplified, or optimized away by compilers in the interest of
minimizing executable size and maximizing execution speed.
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This means that those useful abstractions are not present when
it comes time to analyze an executable program, such as mal-
ware, without access to its source code.

Traditionally, security practitioners would reverse engineer
executables by using a disassembler to represent the semantics
of the program as assembly code. While better than nothing,
assembly code is still far from readable. Decompilers fill this
gap by analyzing an executable’s behavior and attempting to
recover a plausible source code representation of the behavior.
Despite a great deal of work, decompilation is a notoriously
difficult problem and even state-of-the-art decompilers emit
source code that is a mere shell of its former self [18, 26, 33,
38, 39]. Despite this, decompilers are one of the most popular
tools used by reverse engineers.

Figure 1 shows an example of a decompiled function and
its original source code definition. Although the decompiled
code is C source code,1 it is arguably quite different from the
original. We say that decompiled C code is not idiomatic; that
is, though it is grammatically legal C code, it does not use
common conventions for ensuring that source code is readable.
Further, as Figure 1 also illustrates, decompiler output may
be incorrect; that is, it may be semantically nonequivalent to
the code in its executable form. We collectively call these
readability and correctness issues fidelity issues because they
do not faithfully represent the software as intended by its
authors. (See Section 3.1 for a discussion of fidelity).

Fidelity issues are problematic because decompiled code
is usually created to be manually read by reverse engineers.
Reverse engineering is a painstaking process which involves
much time spent rebuilding high-level program design as the
reverse engineer develops an understanding of what the ex-
ecutable binary does [36]. Code that is more faithful to the
original source contains more of the abstractions designed to
assist with human comprehension of code. Thus, the fidelity
of decompiled code to the original source matters, as it can sig-
nificantly impact reverse engineers’ productivity. Evaluating
the products of decompilation based on fidelity to the original
source is common in existing work [9, 11, 15, 21, 22, 24].

Improving the functionality and usability of decompilers
has long been an active research area, with many contem-
porary efforts [7, 13, 14, 30, 37]. A recent trend in this di-
rection is using statistical methods such as deep learning-
based techniques to improve the process of decompila-
tion [12, 15, 19, 21, 32, 42], or augment the output of tra-
ditional decompilers [2, 4, 11, 24, 31]. The latter strands of
work have the potential benefit of building on top of ma-
ture tools like Hex-Rays and Ghidra instead of operating on
binaries, and have already seen promising results for recov-
ering missing variable names and types. Here, researchers
have been developing models that learn to suggest meaning-
ful information in a given context with high accuracy, after
seeing many examples of original source code drawn from

1Decompiled code is not always syntactically correct C code.

open-source repositories like the ones hosted on GitHub.
However, while variable names and types are certainly im-

portant for program comprehension, including in a reverse
engineering context [7, 36, 40], there are many more fidelity
issues in decompiled code, and there is relatively little knowl-
edge of what they are, how they vary across decompilers, and
what the implications are for learning-based approaches aim-
ing to improve the fidelity of decompiled code to the original
source.

We argue that before designing more advanced solutions,
we first need a deeper understanding of the problem. Conse-
quently, in this paper we set out with the Research Goal of
developing a comprehensive taxonomy of fidelity issues in
decompiled code. Concretely, we start by curating a sample
of open-source functions decompiled with the Hex-Rays,2

Ghidra,3 retdec,4 and angr5 [35] decompilers. Next, we use
thematic analysis, a qualitative research method for systemati-
cally identifying, organizing, and offering insights into patters
of meaning (themes) across a dataset [6], to analyze the de-
compiled functions for fidelity defects, using those functions’
original source code as an oracle. To minimize subjectivity,
we develop a novel abstraction for determining correspon-
dence between code pairs, which we call alignment. Using
this abstraction, we define fidelity defects in decompiled code,
creating a taxonomy consisting of 15 top-level issue cate-
gories with 52 in total. We then use our taxonomy to suggest
how the issues could be addressed, framing our discussion
around the role that deterministic static analysis and learning-
based approaches could play.

In this study, we focus primarily on decompiled code from
C-language binaries; that is, those that were built from C-
language source. C is a common source language for malware
and other binaries targeted by reverse engineering efforts. Fur-
ther, most decompilers of machine-code executables generate
output in terms of C pseudocode regardless of the language
in which the source code for the executable was written. It
is unclear what it would mean for a C decompiler to cor-
rectly decompile a Golang executable into C, for example,
since Golang contains concepts and features without a direct
equivalent in C.

We also examine Java decompilation. However, we find
that decompiled Java code is of very high fidelity and thus
there are few fidelity issues to classify.

Our results are robust both across different researchers as
well as the four decompilers we considered.

In summary, we make the following contributions:

• A comprehensive, hierarchical taxonomy of fidelity is-
sues in decompiled code beyond names and types.

• 235 coded decompiled/original function pairs, identify-

2https://hex-rays.com/decompiler/
3https://ghidra-sre.org/
4https://github.com/avast/retdec
5https://angr.io/
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ing over one thousand instances of issues in our taxon-
omy.

• A novel abstraction for assigning code correspondence
in source code pairs and a framework built on this ab-
straction for rigorously applying open coding to those
source code pairs.

• A comparison of four different modern decompilers.

• A thorough analysis describing classes of decompiler
issues and suggestions for how to fix them.

2 Related Work

2.1 Decompilation
Significant efforts have been made in recent years to improve
the performance of decompilers. A large portion of these
efforts concentrate on addressing the core challenges in pro-
gram analysis that are fundamental to decompilation, which
mainly include type recovery and control flow structuring.

Type recovery is the process of identifying variables and
assigning them reasonable types by analyzing the behavior
of the executable. We refer readers to an excellent survey
of type recovery systems [8], but also review some notable
security-oriented work developed in recent years. This in-
cludes systems that operate on dynamic runtime traces, such
as REWARDS [27], and follow-on systems that statically
recover the types by analyzing the executable code at rest.
TIE [26] is an exemplar static recovery system used in the
academic Phoenix [33] and DREAM [38, 39] decompilers.
The Hex-Rays decompiler uses its own static type recovery
system [18].

Control flow structuring is the process of converting an un-
structured control flow graph (CFG) into the structured control
flow commands that are more common in source languages,
such as if-then-else and while loops. The Phoenix [33] decom-
piler introduced a control flow structuring algorithm designed
explicitly for decompilation in that it was semantics preserv-
ing, unlike other more general structuring algorithms. One of
the main challenges of control flow structuring is how to han-
dle code that cannot be completely structured, which can be
caused by using non-structured language constructs such as
gotos. Although the Phoenix algorithm preserved semantics,
it emitted gotos for unstructured code, which could make the
decompiled code hard to read. The subsequent DREAM [38]
and DREAM++ [39] decompilers introduced a new control
flow structuring algorithm and other changes that were in-
tended to improve the usability of the decompiler. Notably,
their structuring algorithm duplicated some code to avoid
emitting gotos, which they found to improve readability. The
RevEngE decompiler [5] provides the ability to do incremen-
tal, on-demand decompilation and is designed for human-in-
the-loop decompilation.

Some researchers [9, 15, 21, 22] have focused on using
machine learning to model the entire decompilation process.
This approach, known as neural decompilation, attempts to
map a low-level program representation, such as assembly,
directly to the source code of a high-level language like C us-
ing a machine learning model, sometimes in multiple phases.
Theoretically, these approaches are capable of generating de-
compiler output that is identical to the original source code.
However, neural decompilation often fails to match the origi-
nal source code.

2.2 Improving decompilation through learn-
ing

Recent work has studied whether it is possible to correct some
of the limitations of current decompilers through learning-
based methods. A popular focus of this work is recovering
variable names for decompiled code, which is a problem that
is not well-suited to traditional program analysis since the
variable names are not explicitly stored in the executable. La-
comis et al. [24] and Nitin et al. [31] found that the generic
variable names used in most decompilers (v1, v2, etc.), make
it more difficult to read decompiled code than the original.
In response, they propose machine-learning-based tools that
propose meaningful variable names in decompiled code to
help alleviate this issue. Chen et al. [11] also found that vari-
able types are often recovered incorrectly by decompilers,
especially composite types like C-language struct, array, and
union types. They build a machine-learning-based tool to
predict missing variable names and types at the same time,
and note that variable names inform variable types and vice
versa. However, while variable names and types are important
fidelity defects, they represent only a subset of all readabil-
ity defects in decompiled code. Our study develops a more
complete taxonomy of readability defects in decompiled code.

2.3 Taxonomy of decompilation defects
Liu and Wang [28] do provide a taxonomy of some defects in
decompiled code, but their study is orthogonal to ours. They
focus only on those defects that produce semantic differences
in the source code, while we more broadly investigate the
characteristics of decompiled code that cause it to differ from
the original, including but not limited to semantic differences.
Further, their taxonomy differentiates these semantic defects
by the phases of decompilation in which they originate rather
than by the nature of the defects themselves. In short, their
study focuses on the decompiler itself while ours focuses on
the fidelity of the decompiler output to the original source.

2.4 The Reverse Engineering Process
There is relatively little work examining how reverse engi-
neers analyze a binary. Votipka et al. [36] conduct detailed
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interview studies with 16 professional reverse engineers to
develop a three-step process model for reverse engineering:
overview, sub-component scanning, and focused experimen-
tation. Burk et al. [7] corroborate these findings. Mantovani
et al. [29] study how reverse engineers (both novices and
experts) move through the flow graph of the binary. They
find that while there is some variance in individuals’ strate-
gies, novice reverse engineers tend to move forward (from
main) more and examine more of a binary, while experts move
backwards and forwards through the flow graph as needed
and more quickly dismiss irrelevant parts of the binary. Yong
Wong et al. [40] investigate the workflows of malware an-
alysts with an emphasis on dynamic analysis through inter-
views with 21 reverse engineering professionals. They build a
taxonomy of reverse engineering processes each with its own
unique interplay between static and dynamic analysis.

3 Methodology

To build our taxonomy of fidelity issues in decompiled code,
we used open-coding techniques [23] followed by thematic
analysis [6] to group these codes into hierarchical themes. In
particular, we used pairs of function representations: a decom-
piled function and the corresponding original function. Open
coding is typically used to systematically analyze textual data,
such as interview data. Coding pairs of source code functions
like this offered some unique challenges. First, we detail the
philosophy we developed to help overcome those challenges.
Next, we discuss practices we used to help guide the coding
process. Finally, we discuss the process we used to code our
examples and develop the codebook.

In open-coding techniques, features of the analyzed entity
are assigned labels called “codes.” Unfortunately, “code” is
also a word used to describe text written in a programming
language. In this paper, for clarity, we will use “label” to refer
to open-coding codes and “code” or “source code” to refer
to text written in a programming language. “Original code”
and “decompiled code” are types of source code, the former
(most likely) written by a human programmer and the latter
generated by a decompiler from an executable program. We
continue to use the term “codebook” to indicate the collection
of all open-coding labels rather than the term “labelbook.”

3.1 Fidelity

We seek to identify, characterize, and catalog the character-
istics of decompiled code that make it differ from the corre-
sponding original source code; the original source code is
our oracle. Accordingly, the labels in our codebook are pre-
sented in terms of differences relative to the original source
code. Henceforth, we use the term “difference” to refer to
the difference between a piece of decompiled code and the
corresponding piece of original code.

Broadly, we consider two ways in which decompiled code
is not faithful to the original source code:

• Correctness issues occur when there is a semantic differ-
ence between the decompiled code and the correspond-
ing original code.

• Readability issues occur when the code is semantically
equivalent but is communicated using different language
features that are difficult to interpret.

Our oracle is most suitable for diagnosing correctness is-
sues. A human researcher can look at the decompiled code
and, with sufficient effort, determine if it is semantically equiv-
alent to the corresponding original code. It is less suitable
for identifying readability issues. After all, there is no guar-
antee that the original source code is readable. Furthermore,
readability itself is somewhat subjective. What some might
consider readable others might not.

To shore up this source of subjectivity, we introduce a
second test. To determine if a difference affects readability,
we ask if the difference simply reflects a difference between
two common idiomatic styles. For example, the decompiler
may place opening curly-brackets on a new line after an if-
statement conditional, while the original code might place
them on the same line as the conditional. Both styles are
common and idiomatic, so this does not constitute a read-
ability issue. Each unique readability issue, along with each
correctness issue, is assigned a label.

Unfortunately, our solution to the readability oracle prob-
lem does not eliminate subjectivity. Rather, it shifts the subjec-
tivity to a different place—what styles are idiomatic? We esti-
mate idiomaticity by asking if a given style is common in C-
language source code. For example, some original code func-
tions include extraneous code like a do { ... } while(0);

loop. In each instance we observed this, the decompiled code
does not include the extraneous code. We consider this differ-
ence to be benign. Another example is inverted conditional
statements. The original code might have an if statement of the
form if (!a) b else c, while the decompiled code might
represent that if statement as if (a) c else b. One ordering
of the clauses is not necessarily more idiomatic than the other.
Missing volatile or static keywords in the decompiled
code are also benign differences because they do not affect
the computations the function performs. We provide a list of
differences that we do not consider to be non-idiomatic, and
thus not readability issues, in the supplementary material.

We treat borderline cases, as well as differences which only
sometimes result in non-idiomatic code, as readability issues.
A summary of the decision process we used to determine if a
code should be added to the codebook is shown in Figure 2.

3.2 Coding Standards
Performing open-coding on our data presented some interest-
ing challenges. We detail them and our solutions here.
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No

Yes

Results in different
function semantics?

No
Yes

Is decompiled code
idiomatic?

Difference between decompiled and original code

Add to codebook Benign

Figure 2: The process by which a difference between the de-
compiled code and corresponding original code was added to
the codebook. Differences added to the codebook are consid-
ered meaningful defects, while others are considered benign
differences in style. When in doubt, differences were added
to the codebook.

3.2.1 Alignment

A critical assumption made in Section 3.1 was that differ-
ences between decompiled and original code could be easily
identified. However, it is not immediately evident what pre-
cisely constitutes a “difference.” Our goal is to determine
if and how clearly the functionality present in the original
code is communicated. Thus, we want to determine which
pieces of the the code are supposed to represent the same
functionality. We say two code fragments that perform the
same functionality (or are intended to) are aligned. If the text
of aligned code fragments is not identical, this constitutes a
difference.

We found that it is often easy to align code by hand, though
there are are some challenges to doing so. Figure 3 demon-
strates several factors that can complicate determining an
alignment. Decompilers may introduce extra statements, such
as declarations and operations for variables that have no equiv-
alent in the original source code (e.g., decompiled line 3 of
Figure 3). Decompilers may also break complex expressions
down into multiple statements, as happens when line 9 in
the original code is broken into two statements in the de-
compiled code (lines 7 and 8). The opposite can be true as
well—decompilers can inline expressions that are separate in
the original code, and can even exclude code from the original
function like redundant or extraneous assert statements. Thus,
line numbers and other simple heuristics are generally unsuit-
able for aligning statements. In fact, many-to-one and one-to-

many mappings between statements, like Figure 3’s original
line 9 and decompiled lines 7 and 8, means that alignment
cannot even be thought of as a mapping between individual
statements.

Despite this, in most cases, alignment is evident when cod-
ing an example. To ensure that our definitions are robust in
corner cases, we provide a formal definition of alignment. The
formal definition can be found in the supplementary material.

3.2.2 Multi-coding

Certain decompiler defects exhibit the characteristics of sev-
eral different labels at once. In these cases, we allow for
multiple labels to identify the same issue. We carefully select
labels so that each fundamental issue receives its own label.

3.3 Dataset

We drew examples for our study from a large dataset derived
from open-source projects on GitHub. This dataset was gener-
ated in an automated fashion by scraping GitHub through its
API to collect majority-C language repositories. In total, our
dataset contains functions from 81,137 repositories. A build
of each project was attempted by looking for build scripts
such as Makefiles and executing those to build executable
binaries using a tool called GHCC.6 All binaries generated
by the build process were collected. Next, each binary was
decompiled using the Hex-Rays decompiler, and all functions
in the binaries were collected for a total of 8,857,873 across
all projects. These functions were matched with the corre-
sponding original function definitions in the original code.
These functions were divided by size. Functions with more
than 512 sub-words (which together make up an identifier
name) and AST nodes were sorted into in the large function
dataset (31% of the total); those with more were sorted into
the smaller function dataset (69% of the total). We mostly
used functions from the small function dataset, though we
also coded ten functions from the large function dataset, as
we discuss in the next section.

3.4 Coding Procedure

We selected a random sample of 200 decompiled/original
function pairs from the small function dataset. We split the
sample into two sets, which we refer to as the small function
development set and small function test set. We coded in
several phases.

1. Collecting Differences. We examined each example
in the small function development set, building a set
of differences without making judgement as to which
semantics-preserving differences constituted readability

6https://github.com/huzecong/ghcc
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Original

1 void help_object(obj_template_t *obj, help_mode_t mode)
2 {
3 if (obj == 0)
4 {
5 set_error("help.c", 436, ERR_INTERNAL_PTR, 0);
6 return;
7 }
8
9 obj_dump_template(obj, mode, get_nestlevel(mode), 0);
10 }

Decompiled

1 long long help_object(long long a1, unsigned int a2)
2 {
3 unsigned int v3;
4 if (!a1)
5 return set_error("help.c", 436LL, 2LL, 0LL);
6
7 v3 = get_nestlevel(a2);
8 return obj_dump_template(a1, a2, v3, 0LL);
9 }

Figure 3: A decompiled function along with the corresponding original definition. Aligning decompiled code with the original
is often easy to perform by hand, but even a relatively simple function like this one illustrates some of the challenges in
defining alignment precisely. Except for return behavior, the decompiled function exhibits the same functionality as the original.
However, the decompiled code uses a different, though equivalent, test in the if conditional, contains extra variables, reorganizes
expressions, and uses a constant instead of the original code’s macro.

differences. This also allowed us to get a sense of com-
mon, idiomatic practices from amongst the original code
samples.

2. Building the Codebook. Next, we assembled a code-
book from the differences. To do this, we first classified
each semantics-preserving difference as either a read-
ability issue or a benign difference. All readability issues
and non-semantics-preserving differences (correctness
issues) were assigned a label. Labels were organized
hierarchically; higher-level labels generalizing several
related labels were created when necessary.

3. Coding Examples With a complete codebook, we then
labeled all 100 examples in the small function test set as
well as 10 examples from the large dataset. This was an
iterative process which ultimately involved refining the
codebook and deriving precise definitions for each label.
There was some interplay between this phase and the
next. While missing variable names and types constitute
readability issues, we did not label these issues on our
examples because they are trivial and significantly clutter
the coded examples.

4. Generalization Across Decompilers The process so far
had been dependent on code that was decompiled by the
popular Hex-Rays decompiler. However, we wanted to
ensure that our results were representative of issues faced
by decompilers in general and not specific to a certain
tool. Thus, we randomly sampled 25 of the second 100
examples, decompiled the corresponding binaries using
three other decompilers, Ghidra, retdec, and angr, and
extracted the requisite functions. We then labeled those
examples using the same codebook. Our codebook devel-
oped on Hex-Rays worked well, requiring one modifica-
tion: differentiating between different types of incorrect
return behavior. (As discussed in Sections 5.1.3 and 5.2,
Hex-Rays exhibited only one type of incorrect return
behavior.)

Table 1: Cohen’s Kappa coefficient of intercoder agreement
for each round of testing. After the first round of testing, we
updated our codebook to make it more robust, which increased
agreement. Cohen’s kappa is usually interpreted as follows:
> 0.4 indicates moderate > 0.6 indicates good, and > 0.8
indicates very good agreement. The bottom two rows are the
mean and weighted mean of Cohen’s kappa individually.

Measure Round 1 Round 2

Lines researchers agreed had 0.67 0.78
fidelity issues
Mean agreement across all labels 0.44 0.58
Weighted mean agreement across 0.70 0.78
all labels

5. Generalization Across Coders To ensure that our code-
book was robust, we performed several rounds of inter-
coder reliability testing [3]. We gave the completed code-
book, along with thorough documentation and examples,
to a researcher with reverse engineering experience. We
randomly sampled 25 out of the second 100 examples,
and gave these to him to code. We then computed inter-
rater agreement using Cohen’s kappa between his labels
and the corresponding labels of the first author. Next,
we measured the agreement and analyzed the results
for any source of disagreement. We then updated the
codebook and performed the process again with a dif-
ferent researcher, updating the codebook each time. Our
evaluation of inter-coder agreement is shown in Table 1.
The agreement is generally good, though worse for rare
issues. Additionally, we found that some disagreement
was not true disagreement but rather the result of mis-
matched assumptions about information external to the
example function or simple fatigue.
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6. Generalization Across Languages In steps 1–5, we fo-
cused exclusively on C code. We also wanted to deter-
mine if our taxonomy was applicable to other languages.
We chose Java, which as an object-oriented and managed
language, is significantly different from C and may offer
different challenges to decompiler writers. We used the
Defects4J dataset [20], which contains seventeen real-
world Java projects and their corresponding build scripts.
We built each project, randomly selected 25 non-unit-test
functions from the dataset, then identified and decom-
piled the corresponding class files using the JD-GUI
decompiler [1]. Finally, we applied our codebook to our
sample of the dataset.

4 Taxonomy

Our study yielded a comprehensive codebook of defects in
decompiled code. Our codebook is organized hierarchically,
with broad, fundamental classes of issues at the top of the
hierarchy and more specific instances at lower levels. There
are 15 top-level labels, and 52 codes across all levels. In this
section, we discuss each of the top-level labels in turn. Fig-
ure 4 contains several artificial example functions, composed
of code fragments and specific issues observed in our dataset,
which collectively illustrate all 15 top-level labels at least
once. Figure 8 in the appendix shows the complete codebook.

C0. Incorrect identifier name: refers identifier names in
the decompiled code, including variable names (C0.a), types
(C0.b), and function names (C0.c), which do not match the cor-
responding identifier names in the original code. Compilers
discard essential information about these abstractions: vari-
able and some function names are discarded entirely, while
type abstractions are reduced to memory offsets. In the ex-
amples we labeled, we did not explicitly label C0 issues be-
cause they vastly outnumber the other types of issues and
because they have already been studied extensively in exist-
ing work [11, 19, 24, 31, 42].

C1. Non-idiomatic dereference: This occurs when a
pointer variable in the decompiled code is used in a way
that does not reflect its type in the original code. More pre-
cisely, it refers to a mismatch between aligned operator(s)
where the operator in the original code is used to access value
at or relative to a memory location. For example, in Figure 4,
C1 labels what was a struct dereference in the original code
(current->next) decompiled as a sequence of three opera-
tions: pointer arithmetic, a typecast, and a pointer dereference
(*((_QWORD *)(v5 + 8))). The example in Figure 4 is in
particular an instance of the sub-label C1.a.i. (Pointer arith-
metic to access struct members) but there are others, including
situations where structs are accessed as if they are arrays
(C1.a.ii.), and where arrays are accessed with pointer arith-
metic (C1.b.ii.).

C2. Unaligned code: refers to situation where decompiled
code does not align with any code in the original function;

that is, the code is extra or missing relative to the original.
Figure 4 illustrates an example where an extraneous variable,
i.e., one that does not occur in the original source code, is
itself initialized by an expression that does not occur in the
original source code.

C3. Typecast issues: refers to extra or missing typecast
operators relative to the original. We do not consider this
to be a part of C2 because extra or missing typecasts are a
consequence of decompilers’ imprecise type recovery and in
that sense could be considered to align with other operators to
ensure that the decompiled code typechecks properly. Figure 4
illustrates an instance of an extra typecast added to a string
literal, a pattern with some string literals in our dataset.

C4. Nonequivalent expression: refers to a collection of
operators that align but that are not semantically equivalent to
each other. Figure 4 illustrates one of several patterns found
in our dataset, where a function call in the decompiled code
receives an extra argument.

C5. Unaligned variable: This label refers to a situation
where a variable in the decompiled code is missing or extra
relative to the original code. We define alignment as a map-
ping between operators. Those operators can be connected in
various ways by variables while still ensuring semantic equiv-
alence. We define an alignment of variables as a mapping
between sets of dataflow connections between operators. A
good variable alignment minimizes the differences between
sets. For example, in the format_name function in Figure 4,
the decompiled code’s variable v1 aligns with len, and v2

aligns with buffer. However, the variable v3 in the decom-
piled code does not correspond to any variable in the original
code; rather, it helps perform part of the functionality of an
inlined function. Thus, it is extra relative to the original source
code. Another example of a situation where extra variables
can occur is when a multi-operator expression in the original
code is broken up into two separate expressions with a vari-
able storing the intermediate result. This occurs in Figure 3
where line 9 of the original code is split into lines 7 and 8 of
the decompiled code.

C6. Non-idiomatic literal representation: This label is
used to label literals used in nonstandard ways. For example,
in Figure 4, the string literal "}\n" is replaced with the integer
constant 2685.

C7. Obfuscated control flow: This label is used when con-
trol flow is used in a way that is not idiomatic. In Figure 4, the
strcat function is inlined. It may be harder to recognize what
the decompiled code is doing relative to the original source
code when a function definition is presented inline instead
of the name which summarizes that functionality. Another
example of C7 is a for-loop used in a non-idiomatic way as
illustrated in Figure 5.

C8. Issues in representing global variables: Decompil-
ers sometimes struggled to represent global variables correctly.
In our examples, global variable names were not explicitly
stripped out. Thus, in some cases, a reference to a global
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Figure 4: Examples of each of the top-level labels in our codebook. These examples have been artificially constructed by
combining code fragments and common patterns from our sample in such a way that all fifteen top-level labels are represented at
least once. For legibility, only one instance of each top level label is identified in the diagram, though there are multiple instances
of certain issues present across each of the functions. In some cases, a subclass of the top-level label might apply; in this diagram,
we identify issues only by their top-level labels for simplicity.
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Original Code
1 while (pack->next_object != obj)
2 {
3 pack = pack->next_object;
4 }

Decompiled
1 for (i = a2;
2 a1 != (*((_QWORD *) (i + 64)));
3 i = *((_QWORD *) (i + 64)));

Figure 5: A decompiled while loop that qualifies as an in-
stance of label C7 (obfuscated control flow). This example
also contains instances of C1 (non-idiomatic dereference),
which also contribute to making it harder to read.

variable could occur by referencing the name of the global
variable, just as occurred in the original source code. How-
ever, this was not always the case, especially with composite
global variables. For example, Figure 4 illustrates an example
of a pattern in our dataset where a global struct is broken up
into multiple variables. The .name component of the struct is
represented with a reference to a decompiler-generated global
variable seemingly named after a memory location.

C9. Expanded symbol: refers to the situation where a
macro or similar construct like sizeof is represented by its
value rather than by the symbol itself. For example, Figure 4
shows an example of how a sizeof expression is replaced
with a constant.

C10. Use of decompiler-specific macros: Some decom-
pilers define and use macros in decompiled code. An example
of this is the LODWORD macro shown in Figure 4 and similar
macros used by the Hex-Rays decompiler, which are used
in some situations involving type conversion and bitwise op-
erators. As with any feature of decompiled code, these may
become less problematic the more a reverse engineer becomes
familiar with them, but they represent information a user must
know to interpret decompiled code.

C11. Abuse of memory layout: This label refers to the sit-
uation where memory is used in a non-idiomatic while being
semantically equivalent to the original code. For example, Fig-
ure 4 illustrates a situation where two consecutive elements of
a struct are each initialized to 0. The decompiled code treats
both struct members as a single entity and assigns 0 to the
entire construct.

C12. Incorrect return behavior: Sometimes, a decom-
piled function returns a value while the original function does
not or vice versa. In these scenarios, we code C12; there is
one sub-label for each of the two situations. Figure 4 shows
an instance of C12.a, where a function that is originally void

has a return value.
C13. Decomposition of a composite variable: When

composite variables like structs or arrays are used directly
in a function (as opposed to with a pointer), the decompiler
may interpret the members of those composite variables as

separate variables. Figure 4 illustrates this with a global vari-
able.

C14. Type-dependent nonequivalent expression: This
occurs as a by-product of the decompiler choosing an in-
correct type. When the decompiler chooses an incorrect type,
it may cause other expressions to become incorrect relative to
the original code such that changing only the type does not fix
the code. In Figure 4, the decompiler interprets what should
be an int array as a char array. Accordingly, to ensure the
behavior of the function remains the same, the decompiler
uses the expression (4 * a2) * i as compared with the orig-
inal code’s i * m (where a2 aligns with m). If the type in the
decompiled code was corrected to int *, the resulting code
would be incorrect without further changes.

5 Discussion

Our taxonomy can be used to reason about issues in decom-
piled code. In particular, we are interested in improving the
fidelity of decompiler output. We use our taxonomy to reason
about how certain classes of issues can be fixed. Next, we
compare the four decompilers used in the study. We use the
taxonomy to identify how each decompiler performs. Finally,
we discuss how our taxonomy applies to Java.

5.1 Automatically Mitigating Issues
Our taxonomy classifies the types of defects that can be in-
troduced when decompiling code. A natural question is then
whether these differences can be automatically corrected. In
this section, we analyze how some classes of defects might
be automatically mitigated.

Many aspects of decompilation are fundamentally undecid-
able because multiple distinct source programs can compile
to the same executable. Consequently, decompilers rely on
approximation and heuristics to make decisions. Traditionally,
decompiler researchers have approached the problem of con-
structing decompilers by creating sophisticated static analysis
algorithms that examine a single executable in isolation. We
call such approaches deterministic because they will always
decompile an executable to the same code. More recently,
researchers have been experimenting with probabilistic ap-
proaches such as machine learning [9, 11, 15, 21, 22, 24, 31].
In addition to examining the executable being decompiled,
these approaches incorporate knowledge about the distribu-
tion of other programs.

Probabilistic approaches are attractive because they can
leverage information about the distribution of programs to
compute an answer that is—on average—most likely to be
correct, even if it is not always correct. In some cases, this
can allow predictions to be made that would be impossible
using a deterministic approach. As an extreme example, a
probabilistic approach can predict a variable’s name by ex-
amining the context in which it is used, even though a vari-
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able’s name can be changed without affecting the executable
form of the program [24]. The downside to probabilistic ap-
proaches is that they are inherently more difficult to under-
stand, which can lead reverse engineers to mistrust them; this
is a previously-identified problem in AI [41]. In contrast, as
a reverse engineer who participated in Votipka et al.’s [36]
study of the reverse engineering process said, "[...] Hex-Rays
can be wrong [...] but [it] is only wrong in specific ways."

Thus, we prefer deterministic solutions when possible, be-
cause they are easier to understand, and thus to trust. In this
vein, we differentiate between four different categories of
determinism in our analysis:

• Deterministic: A deterministic function can be applied
to the original decompiled code to repair the defect.

• Deterministic given types: Some defects are caused by in-
accuracy during type recovery. Type prediction itself can-
not be solved deterministically because multiple source
programs with distinct types can be compiled to identical
executables. However, if the decompiler is provided with
accurate types—either by the user, or a system such as
DIRTY [11]—then the issue can be fixed by a determin-
istic analysis.

• Deterministic heuristic: Most of these defects can be
addressed using a deterministic heuristic—a heuristic
that only examines the program being decompiled—but
not always. The general case requires probabilistic rea-
soning.

• Probabilistic: These defects cannot be remedied by any
function that only leverages information in the exe-
cutable. Consequently, the best that can be hoped for
is making likely decisions based on an expected distribu-
tion of programs.

In the following discussion, we make references to the
relative frequencies of certain labels. We caution that our
sample may not be representative of software in general, and
that these relative frequencies may differ in other software.

5.1.1 Deterministic

Some types of defects can be repaired by applying a determin-
istic analysis. However, they are rare. It appears the sophisti-
cated static analysis techniques used by modern decompilers
already take advantage of most deterministic opportunities
for improving fidelity.

One issue that can be deterministically repaired is C10.a
(bitwise operators with decompiler-specific macro). Figure 6
shows an example of a C10.a issue that occurs in Hex-Rays,
but not in the other three decompilers. This indicates by ex-
ample that it is possible to decompile such operations without
decompiler-specific macros. Some users of Hex-Rays may
find these macros helpful because they help explicitly specify

Original Code
1 sreg |= 1 << 7;

Decompiled by Hex-Rays
1 LOBYTE(result) = sreg | 0x80;
2 sreg = result;

Decompiled by Ghidra
1 sreg = sreg | 0x80;

Figure 6: How an example bitwise operation is decompiled by
Hex-Rays and Ghidra compared to the original source code.
Wherever we identified code C10 for Hex-Rays, we did not
identify it for Ghidra. Label C10 refers to decompiler-specific
macros used with bitwise operators; LOBYTE here.

what is happening to specific bytes in an expression. However,
in general, we do not know if they are more or less preferable
to reverse engineers than the original code. In any case, C10
represents a barrier to entry for those unfamiliar with this
aspect of the tool.

C6.d is another issue that can be repaired deterministi-
cally, and refers to situations where a string literal is re-
placed by a reference to another location in the binary, e.g.
fz_strlcpy(param_4,&DAT_00100cdf,param_5) instead of
fz_strlcpy(buf, "CBZ", size). In this case, a rule that al-
lows for the recovery of the string is to go to the location
provided and replace the reference with the string at that loca-
tion.

Finally, a subset of C5.a.i (extraneous variable duplicating
another variable) issues can be addressed deterministically.
This can happen when a duplicate variable:

• copies the value in another variable

• could be replaced with the variable they copied without
altering function semantics. (In many cases, duplicate
variables are never read from after initialization).

To fix these issues, replace the duplicate variable with the
variable from which it takes its value.

Deterministic issues can be fixed such that they match the
original code exactly.

5.1.2 Deterministic given types

We say some codes can be fixed by a function that is deter-
ministic when given type information. Many codes fall into
this category: C0.b, C1, C3, C8, C11, C13, and C14. Type
prediction itself is undecidable in general. However, if some
technique can correctly predict the type of the variables in-
volved, then each code in this category can be resolved deter-
ministically. Some decompilers, such as Hex-Rays, already
feature an API to re-decompile a function when type informa-
tion is given to correct these issues; that is, the deterministic
piece is already built into these decompilers.
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There is existing work on type prediction. Chen et al. [11]
develop a probabilistic model, DIRTY, for predicting types
in decompiled code. A key limitation of DIRTY, however, is
that its prediction for a given variable is based on the memory
layout of that variable on the stack and how that variable is
used within a single given function. This is problematic in the
case of a very common class of variables: pointers, especially
pointers to composite types like structs. The memory layout
of a pointer variable on the stack is simply a single value
representing the memory location of the data.

However, it is still possible to infer the composite types
being pointed to based on how these types are accessed; dif-
ferent types may have different access patterns. For example,
an array may be more likely to have its members accessed
sequentially in a loop, while a struct may be more likely to
have unordered accesses to arbitrarily-sized memory offsets.
Accesses of different parts of a composite type are, in gen-
eral, spread out throughout multiple functions. Therefore, it
might be necessary to examine all functions in which a given
composite data type is used to determine what that type is.
We identify general type prediction as a major opportunity to
significantly improve the output of decompilation.

Type prediction can also often help with better representing
literals in certain situations. For example, the decompiler
often represents character literals as small, positive integers
(C6.a); when these integers are used in conjunction with char

variables, it may be reasonable to convert each integer literal
to the corresponding character literals (i.e., 65 to ’A’).

If the type prediction mechanism is correct, these issues
can be fixed so they match the original code exactly. However,
probabilistic type prediction may make mistakes.

5.1.3 Deterministic heuristic

Most issues in this class can be fixed by applying a determin-
istic heuristic. However, the heuristic is known to be incorrect
in some cases.

Unaligned Variables Unaligned variables (C5)—that is,
those that are extra (C5.a) or missing (C5.b) relative to the
original code—are examples of unaligned variables. Data can
flow between operators in various ways. If the first argument
to bar is the result of evaluating foo, we can represent this
dataflow in source code by either inlining the two expressions
(as in bar(foo());) or by assigning the result of foo to a vari-
able and passing this to bar (as in v1 = foo(); bar(v1);).

In our observation, all four decompilers usually opt for the
second approach. This results in many extra variables (C5.a)
not present in the original source code, cluttering the code
and, in our experience, making it harder to follow.

Of course, sometimes it makes sense to use variables to
store intermediate values. When the result of an expression
is used more than once, saving the value rather than recom-
puting it often makes sense or even may be necessary (in

the case of functions with side-effects). Variables are often
needed when their values are updated in a loop body. And
in some cases, breaking a long expression down into smaller
sub-expressions in a sensible way can help make those compli-
cated expressions easier to understand. Finally, programmers
will occasionally declare extraneous variables on purpose,
often for type-related reasons, as occurs in this snippet from
our dataset:
1 void FreeTextStream(void *ios)
2 {
3 TextStream *io = ios;
4 // other code using io but not ios ...

In general, though, for all four decompilers, extra variables
greatly outnumbered missing ones, indicating that decom-
pilers generally tend to err too much on the side of using
intermediate variables, at least relative to what the authors
of the original code had written. In many cases, extraneous
variables can be eliminated by applying the following rule: if
the variable is assigned to once then subsequently read from
once, eliminate the variable and inline the two expressions.
In fact, this rule applies to v3 in Figure 3. It is possible that
this may help reduce reverse engineers’ mental strain because
they have to track fewer variables in the decompiled code.

We empirically validate this heuristic by showing that the
vast majority of variables written to and read from once are
not present in the original source code. To do this, we use the
DIRE dataset [24], a large dataset of decompiled functions
wherein generic decompiled variable names are matched with
the corresponding variable names in the original source code,
if any. We search each function for non-parameter local vari-
ables that are written to and read from once. The percentage
of these that are decompiler generated (i.e., are lacking a cor-
responding developer-provided name from the original source
code) is 85.9%. In other words, the vast majority of variables
that are written to and read a single time are fabrications of
the decompiler. Cates et al. [10] evaluate how breaking down
expressions into smaller expressions with intermediate vari-
ables affects comprehension. They found that breaking down
expressions using extra variables impedes comprehension,
which also suggests that our inlining heuristic may be reason-
able. However, we caution against making strong conclusions
due to the study’s small number of participants (n = 6).

Extraneous Expressions C2.a.i is a common byproduct of
C5.a (extra variable in the decompilation), which is discussed
in the preceding section. C2.a.i refers to situations where
an extraneous expression (i.e., one that does not align with
anything in the original source code) is used to initialize an
extraneous variable. Identifying extraneous variables cannot
be done deterministically but can be done heuristically, as
discussed above. If extraneous variables are identified and the
extraneous expression has no side effects (which is usually
the case), then the whole extraneous initialization statement
can be removed.
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Incorrect Return Behavior Incorrect return behavior
(C12) is another instance of an issue that a heuristic can rem-
edy. We consider two possible cases for incorrect return be-
havior: C12.a (return value for void function) and C12.b (no
return value for non-void function). A deterministic heuristic
that often fixes C12.a is to make a decompiled function return
void if no function that calls it uses its return value. This rule
does not work all of the time, however, in the case of functions
that do have a return value that just so happens to be unused
by all other functions in the program. Interestingly, it appears
that Ghidra may follow this rule, while Hex-Rays, retdec and
angr seemingly do not. Accordingly, our Ghidra sample has
no C12.a labels but falls afoul of C12.b.

Thus, applying this rule incurs a trade-off. We endorse
its use, however, because the code to prepare a return value
that is never used can be thought of as extraneous from the
perspective of the program as a whole. Eliminating it may
in fact enhance clarity. Meanwhile, unnecessary extra code
for returning values unnecessarily can clutter up decompiled
functions, sometimes significantly. Additionally, C12.b also
seems to be less common than C12.a, though we caution that
this observation may be due to sample size.

We empirically evaluate this rule by measuring how often
the return values of functions are used by other functions
in the same project (i.e., GitHub repository) across all the
projects and functions in the dataset from which we sampled
our labeled examples. We perform this study on the original
code so our results reflect the ground truth of how developers
use return values. For each function in our dataset, we deter-
mine whether or not its return value is used in that project
by scanning the body of each other function in the project
and recording if a call to that function occurs in an expres-
sion that uses the function’s return value. In addition, we
record whether or not the function is void. There are thus four
possible classes that a function can fall into:

1. void function, return value unused

2. non-void function, return value used

3. non-void function, return value unused

4. void function, return value used.

We count the first and second cases as rule successes, the
third case as rule failures, and the fourth as undefined behav-
ior. Undefined behavior was very rare (0.75% of the total).
Excluding undefined behavior, our rule is successful 76.1%
of the time across the projects in our dataset. To prevent very
large projects from dominating the results, this number is
calculated by computing the success rate in each project and
averaging across projects.

Figure 7 shows the decompiled function from Figure 3
when both of these heuristics are applied. Applying the heuris-
tics increases similarity to the original.

1 long long help_object(long long a1, unsigned int a2)
2 {
3 if (!a1)
4 return set_error("help.c", 436LL, 2LL, 0LL);
5
6 return obj_dump_template(a1, a2, get_nestlevel(a2),

0LL);
7 }

Figure 7: The decompiled function from Figure 3 with the
heuristics in Section 5.1.3 applied. Applying the heurisitics
increases similarity to the original.

5.1.4 Probabilistic

Issues identified as probabilistic cannot be accurately reme-
died in general, because of the inherent undecidability in
decompilation. However, these classes of issues can be im-
proved in practice by techniques such as statistical modeling
or machine learning.

Incorrect identifier names (C0) require nondeterminism be-
cause the information needed to reconstruct them is partially
or completely discarded during compilation.

The label C2 refers to missing or extra code in the decom-
piled code relative to the original. In general, without access
to the original source code, determining what is missing or ex-
tra is not possible. There are a few exceptions with C2.a (extra
statement), however. As is discussed in Section 5.1.3, extra
statements correlating with extraneous variables (C5.a) and
extraneous return behavior (C12.a) can be eliminated. C2.b
(missing code) issues are usually serious, and are discussed
at the end of the section.

The label C7 refers to non-idiomatic control-flow represen-
tations. This is a good use case for function-level statistical
modeling. In C7, the semantics of the code are presented cor-
rectly, but in a confusing manner, as illustrated in Figure 5.
Because all of the correct semantics are present, the non-
idiomatic code is reasonably predictive of the more idiomatic
version.

C9 labeled issues (expanded macros and other symbols)
generally require nondeterminism to address. This is es-
pecially true for user-defined macros, which in our sam-
ple overwhelmingly were used to “name” a constant (like
CRYPT_ERRTYPE_ATTR_ABSENT representing 3). These macros
can be useful because they communicate information about
the meaning of certain constants. Addressing C9 issues may
require whole-program level information because it is often
not clear from a single instance of a constant the meaning that
the author assigned that constant. It may be possible, however,
for these usage patterns to be teased from the program as a
whole. The same is generally true for other macros, though
some may be easier than others. Constant macros from com-
mon libraries may be guessable (e.g., O_RDONLY for C’s open
function).

C2.b issues occur when functionality is missing, and C4
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Table 2: A comparison of the frequency at which selected
labels occurred on a sample of 25 functions decompiled by
four different decompilers. Note that these results may not
generalize due to the relatively small sample size. The full
table is given in the supplementary material (see Availability).

Label Hex-Rays Ghidra Retdec Angr

C1.a.i 20 22 20 0
C1.a.ii 8 4 0 20
C4 9 2 28 52
C4.a.i 2 0 3 21
C5.a. 14 16 24 16
C5.a.i 4 0 4 8
C12.a 11 0 12 5
C12.b 0 1 0 3

represents most types of semantic non-equivalence between
two pieces of code. These are particularly difficult issues to
handle. With most other issue classes, the semantics of the pro-
gram as provided by the decompiler are predictive, sometimes
in a roundabout way, of the target original code. However,
with C2.b and C4, this is not the case. Thus, we would not
generally expect a predictive model to be able to correctly
fix them in general. It might be possible to infer the correct
behavior if a nondeterministic technique is able correctly infer
the purpose of the program as a whole. However, these issues
might be best addressed by refining the rules decompilers use
to generate source code.

Probabilistic techniques in the best case can fix issues so
that they match the original code exactly. However, they are
also capable of making arbitrary mistakes.

5.2 Comparison of Decompilers
To ensure the generality of our codebook, we randomly sam-
pled 25 functions from the small function test set (Section 3.4)
and decompiled them with the Hex-Rays, Ghidra, and retdec,
and angr decompilers. We then coded the output from each
decompiler using our codebook. We found that our code-
book was applicable to all four decompilers, but that each
decompiler tended to make different types of mistakes. In this
section, we discuss the differences between the decompilers.
The relative frequencies of selected issues across decompilers
are show in Table 2.

5.2.1 Hex-Rays Decompiler

Hex-Rays is a popular commercial decompiler sold as an add-
on to IDA, a popular, interactive disassembly tool. Compared
to the original source code, Hex-Rays created many extra-
neous variables (C5.a). Hex-Rays also struggled with global
composite variables, treating them as if they were separate
global variables, with names derived from memory offsets

(e.g. dword_9368) (C8 and C13). Hex-Rays also introduced a
return value for many functions that did not have one (C12.a).
However, we recorded no instances of C12.b (no return value
for non-void functions). As a side effect of its tendency to
create extraneous variables to store those extraneous return
values and to favor a single return statement at the function’s
end rather than multiple throughout, Hex-Rays sometimes
added many extra lines of code.

5.2.2 Ghidra

Ghidra is an open-source decompiler developed by the Na-
tional Security Agency. Similar to Hex-Rays, Ghidra intro-
duces many extraneous variables (C5.a). Unlike for Hex-Rays,
we observed no instances of C5.a.i (extraneous variable du-
plicating another variable) for Ghidra. As with Hex-Rays,
Ghidra struggled with global variables, though interestingly,
not always on the same functions as Hex-Rays. In one case,
Ghidra recognized an issue with overlapping symbols at the
same address and provided a comment warning about it. As
discussed in Section 5.1.3, Ghidra is conservative with return
values; we observed no instances of C12.a (return value for
void function) and only a single instance of C12.b (no return
value for non-void function).

5.2.3 Retdec

Retdec, an open-source “retargetable decompiler”, is a decom-
piler inspired by LLVM’s retargetable nature. Like the other
decompilers, retdec uses many extraneous variables (C5.a).
However, retdec is also the only one of the four decompilers to
create extraneous variables that represent individual struct
members (C5.a). Retdec has many issues representing global
variables (C8), and unlike the other decompilers, used generic
placeholders instead of global variable names (e.g., g2) even
when those global names were available from symbols in the
binary. Perhaps most concerningly, retdec had many more in-
stances of C4 (nonequivalent expression)—28—than Ghidra
(2) or Hex-Rays (9), though fewer than angr (52). Retdec
has a tendency to replace some expressions, especially string
literals, with the constant 0.

5.2.4 Angr

Angr [35] is an open-source binary analysis framework with
many features, including a decompiler. One notable feature
of angr, unique among the decompilers we analyzed, is its
generic structure suggestions, such as
1 typedef struct struct_1 {
2 char padding_0[8];
3 unsigned long long field_8;
4 } struct_1;

As expected, angr did not always correctly detect structs;
it frequently decompiled structs as arrays, resulting in many
instances of C1.a.ii (array access to access struct members).
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Interestingly, unlike Hex-Rays and Ghidra, angr has instances
of both C12.a (return value for void function) and C12.b (no
return value for non-void function). More concerningly, angr
frequently adds extra arguments to function calls that are
not present in the original source (C4.a.i). Generally, angr’s
decompiler output is more frequently semantically incorrect
than all three other decompilers (52 for angr as compared with
9, 2, and 28 for Hex-Rays, Ghidra, and retdec, respectively).

5.3 Applying the Taxonomy to Java
To determine how well our taxonomy applies to a language
other than C, we sampled Java functions from the Defects4J
dataset [20] and coded them as described in Section 3.4. We
found that Java decompiler output has substantially fewer fi-
delity issues than C decompiled code. In particular, we only
found instances of C3 (typecast issues) and C4 (correctness
issues). The latter are mostly subtle, and we believe they are
caused by decompiler bugs (rather than fundamental undecid-
ability). For example, in one C4 issue we found, a variable
in the decompiled code is declared inside an if-statement
and used outside of it. This is semantically illegal in Java.
In the original code, the variable is declared directly before
the if statement. We believe that the additional information
stored in Java bytecode makes the process of decompiling
Java code substantially more tractable. We suspect this is true
for decompiling other managed languages as well.

In summary, while all fidelity issues we discovered in Java
decompilation fit within our taxonomy, the naturally high
fidelity of Java decompilation meant that there were very few
issues to classify.

6 Threats to Validity

There are several threats to validity resulting from the
dataset’s composition and construction. In some security ap-
plications, binaries may be obfuscated, making them more
difficult to reverse engineer. The dataset we drew from did not
include any obfuscated binaries. It also consisted largely of C
projects from GitHub. It is unlikely that many of them are mal-
ware. It is possible that there are different fidelity issues that
we did not consider that would be exposed had we performed
this research on obfuscated binaries or malware, which may
be disproportionately common in security settings.

Additionally, the dataset was constructed by attempting to
compile projects found on GitHub. The sample is necessarily
biased towards those projects that had recognizable build
scripts and further, that built.

Finally, the dataset that we drew from performed a filtering
step that removed grammatically invalid examples. Unfortu-
nately, this filtering step filtered out some grammatically valid
examples as well. This problem largely affected functions
where struct type names were declared using the struct

keyword in the function. Struct variables whose types were

declared with typedefed names were unaffected, and thus
our data includes many struct-typed variables. It is possible,
though unlikely, that this caused a certain type of decompiler
issue to be excluded from our sample, though we found no
evidence of this during spot-checks.

7 Future Work

Our study identifies nontrivial fidelity issues in decompiled
code. It is probable, however, that not all of these issues have
the same impact on the difficulty of reverse engineering. A
challenge for future work is to determine which issues have
the largest impact on reverse engineers’ productivity.

Existing program comprehension literature, for the most
part, does not cover issues in our taxonomy. This is because to
our knowledge all existing program comprehension literature
focuses on normal (original) source code. Decompiled code
is fundamentally different from normal source and thus the
issues identified by existing literature in program comprehen-
sion [16, 17, 25] differ from those in our taxonomy.

Our work may also be useful for evaluating decompilers.
Our taxonomy is defined in terms of alignment. Determining
alignment automatically in general is a hard problem; in our
study, this was performed by human experts. However, given
a suitable technique for determining alignment, our taxonomy
could be used to automatically evaluate decompiler output or
neural decompilation methods. In particular, numeric scores
related to the frequency of each issue in the taxonomy could
be reported. This would allow a detailed and nuanced quanti-
tative measurement of the quality of decompiler output.

8 Conclusion

In this work, we build a taxonomy of fidelity issues in decom-
piled code. We analyze our taxonomy, identify patterns in our
data, and suggest how different classes of defects could be
addressed.

Based on our results, we identify several promising future
directions for work on improving the output of decompilers.
First, techniques with the ability to predict types in general,
including the types of pointers, have the ability to help address
a large class of issues. Second, decompilers themselves could
adopt a collection of rule-based approaches which address
some issue classes and minimize the impact of others. Finally,
we see the opportunity for nondeterministic techniques, espe-
cially scaled to be multi-function or whole-program level, to
broadly address many classes of errors including some of the
most difficult issues and corner-cases that other techniques
do not solve.
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[43] Lukás Ďurfina, Jakub Křoustek, and Petr Zemek. Psybot
malware: A step-by-step decompilation case study. In
2013 20th Working Conference on Reverse Engineering
(WCRE), pages 449–456, 2013. doi: 10.1109/WCRE.
2013.6671321.

Published in the Proceedings of the 2024 USENIX Security Symposium



C0. Incorrect identifier name
C0.a. Incorrect variable name
C0.b. Incorrect type name
C0.c. Incorrect function name

C1. Non-idiomatic dereference
C1.a. Non-idiomatic struct dereference
C1.a.i. Pointer arithmetic to access struct member
C1.a.ii. Array access to access struct member
C1.a.iii. Pointer dereference to access first struct member
C1.b. Non-idiomatic array dereference
C1.b.i. Pointer dereference to access array member
C1.b.ii. Pointer arithmetic to access array member

C2. Missing or extraneous code
C2.a. Extraneous code
C2.a.i. Extra code to initialize extraneous variable
C2.b. Missing code

C3. Typecast Issue
C3.a. Extraneous typecast
C3.b. Missing typecast

C4. Nonequivalent expression
C4.a. Incorrect arguments
C4.a.i. Extra arguments
C4.a.ii. Missing arguments
C4.a.iii. Unused missing arguments
C4.b. Equivalence depends on behavior of external code
C4.c. Extra & when accessing global variable

C5. Unaligned variable
C5.a. Extraneous variable
C5.a.i. Extraneous variable duplicating another variable
C5.b. Missing variable

C6. Non-idiomatic literal representation
C6.a. Character literal as integer
C6.b. String literal as single integer
C6.c. Very large positive integer for negative integer
C6.d. String replaced with reference to undeclared or global
variable

C7. Obfuscating control-flow refactoring
C7.a. While loop as non-canonical for loop
C7.b. Canonical for loop as while loop
C7.c. Inline function definition instead of function call
C7.d. Deconstructed ternary

C8. Issue in representing global variable

C9. Uses expanded symbol
C9.a. Expanded standard symbol
C9.b. Expanded user-defined macro

C10. Use of nontype decompiler-specific macro
C10.a. Bitwise operators with decompiler-specific macro

C11. Abuse of memory layout

C12. Incorrect return behavior
C12.a. Return value for void function
C12.b. No return value for non-void function

C13. Decomposition of a composite variable into multiple
variables

C14. Type-dependent incorrect expression

Figure 8: The complete codebook.
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