BAP: A Binary Analysis Platform

David Brumley
lvan Jager
Thanassis Avgerinos
Edward J. Schwartz

Carnegie Mellon University

3 Simple Lines

add %eax , %ebx ; ebx =eax+ebx (sets OF SF, ZF, AF, CF, PF)
shl %cl , %ebx ; ebx = ebx << cl (sets OF, SF, ZF, AF, CF, PF)
jc error ; jump to error if carry flag is set

Can you reach the error?

7/20/2011 Carnegie Mellon University

INSTRUCTION SET REFERENCE, N-Z

SAL/SAR/SHL/SHR—Shift

Opcode™* _ Instruction Op/ 64-Bit Compat/ Description
€n Mode LegMode
00/4 SAL /m8, 1 A Valid Valid Multiply r/m8 by 2, once.
REX+DO/4 SAL/m8*,1 A Vald NE Multiply r/m8 by 2, once.
D2/4 SAL r/m8, CL B Vald Valid Multiply r/m8 by 2, CL times.
REX+D2/4 SAL/m8*,CL B Valid NE Multiply /m8 by 2, CL times.
o SAL/m8,imm8 € Valid Valid Multiply /m8by 2, imm8
times.
REX+C0/4ib SAL/m8*,imm8 C Valid NE Multiply r/m8 by 2, imm8
times.
D1/4 SAL /m16, 1 A Valid Valid Multiply r/m16 by 2, once.
03/4 SAL/mIGCL B Valid Valid Multiply r/m16 by 2, CL
times.
i SAL/m16,imm8 € Valid Valid Multiply r/m16 by 2, imm8
times.
D1/4 SAL /m32,1 A Valid Valid Multiply /m32 by 2, once.
REXW +D1/4 SAL/m64,1 A Valid NE. Multiply r/m64 by 2, once.
03/4 SALmm32,CL B Valid Valid Multiply r/m32 by 2, CL
times.
REXW+D3/4 SALUm64,CL B Vaid NE Multiply r/m64 by 2, CL
times.
i SAL /m32,imm8 € Valid Valid Multiply r/m32 by 2, imm8
times,
REXW+C1/4 SALm64,imm8 C Valid NE. Multiply r/m64 by 2, immg
ib times.
00/7 SAR r/m8, 1 A Valid Valid Signed divide* /m8by 2,
ce.
REX+DO/7 SARpm8*™1 A Vald NE Signed divide* /m8by 2,
once.
02/7 SAR r/m8, CL B Vald Valid Signed divide* /m8by 2, CL
REX+D2/7 SARpm8™,CL B Valid NE Signed divide* /m8by 2, CL
times.
w7 SAR r/m8, inm8 € Valid Valid Signed divide* /m8by 2,
imm8 time.
REX+C0/7ib SARr/m8*, imm8 C Valid NE Signed divide® r/m8by 2,
imm8 times.
SALISAR/SHL/SHR—Shift Vol.28 4353

INSTRUCTION SET REFERENCE, -2

The SAR and SHR Instructions can be used to perform signed or unsigned division,
respectively, of the destination operand by powers of 2. For example, using the SAR
instruction to shift 3 signed integer 1 bit o the right civides the value by 2.
Using the "
result as the DIV nstruction. The quotient from the IDIV instruction s rounded

3 zero, whereas the "quotient” of the SAR instruction is rounded toward nega-
tive infinity, This difference is apparent only for negative numbers. For example,
when the IDIV instruction is used to civide -9 by 4, the resultis -2 with a remainder
of -1. If the SAR instruction is used to shift -9 right by two bits, the result is -3 and
the "remainder” is +3; however, the SAR instruction stores only the most significant
bit of the remainder (in the CF flag).
The OF flagis ffcted oy on -5t it For et i the OF g fs s 00 he

that s, the top two bits
O tne ovgina operand ware e same); seraise 5 Sk 6 1. For he SAR etruc-
tion, the OF flag is cleared for all 1-bit $hifts. For the SHR instriction, the OF flag is
t o the most-significant bit of the original operan

In s4-it made, th ntrucin's defaut aperaionsize s 32 bisand the mascwidth

5. Using a REX prefix in the form of REX.R permits access to addtional
reg\slers (RB-R15). Using a REX pri i the form ofREX W promotes operation to
for CLto

i oftis secton for enceding data and Imits.

1A32 Architecture Compatiblity

6 does not mask the shift count. However, all other IA-32 processors
(starting with the Intel 286 processor) do mask the shift count to 5 bits, resulting in
a maximum count of 31. This masking is done in all operating modes (including the.
virtual-8086 mode) execution time of

Operation
IF 64-5it Mode and using REX W
THEN
CounthASK - 3FH;

CounthASK - 1FH;

{empCOUNT < (COUNT AND countASK),
tempDeST
WHILE tempCOUNT #.0)
0
IF instructions SAL or SHL

CF - MSBDEST):

SAUSARISHUSHR St Vot28 4357

SHL Specification

INSTRUCTION SET REFERENCE, N-Z

Opcode Instruction Op/ 64Bit Compat/ Description
€0 Mode LegMode

D177 SAR /m16,1 A valid Valid Signed divide* r/m16by 2,

D377 SAR/MIGCL B Valid Valid Signed divide* r/m16 by 2,
CLtimes.

ani SAR /m16,imm8 C Valid Valid Signed divide* /m16by 2,
imm times.

D1/7 SAR /m32,1 A Valid Valid Signed divide* /m32by 2,

REXW+D1/7 SAR r/m4, 1 A valid NE Signed divide* r/m64 by 2,

D377 SARM32.CL B Valid Valid Signed divide* /m32by 2,
CLtimes.

REXW+D3/7 SARpmG4,CL B Valid NE Signed divide* r/m64 by 2,
CLtimes.

i SAR /m32,immg C Valid Valid Signed divide* /m32by 2,
imm8 times.

REXW+C1/7 SARr/m64,imm8 C Valid NE Signed divide* /m64 by 2,

ib immg times.

D0/4 SHL r/m8, 1 A Valid Valid Multiply r/m8 by 2, once.

REX+D0/4 SHLom8*1 A Valid NE Multiply r/m8by 2, once.

D2/4 SHL r/m8, CL B Vaid Valid Multiply r/m8 by 2, CL times.

REX+D2/4 SHLOmB*.CL B Valid NE Multiply r/m8 by 2, CL times.

o/4ib SHLr/mg, imm8 € Valid Valid Multiply r/m8 by 2, immg

REX+CO/4ib SHL/m8*, imm8 C Valid NE Multiply r/m8by 2, imm8
times.

D1/4 SHLIm16,1 A Valid Valid Muttiply /m16 by 2, once.

D3/4 SHLpmi6CL B Valid Valid Multiply r/m16by 2, CL
times.

cl/4ib SHL /16, imme C Valid Valid Multiply /m16 by 2, imm8
times.

D1 /4 SHL m32.1 A Valid Valid Multiply r/m32 by 2, once.

REXW+D1/4 SHL /m64,1 A Vald NE Multiply r/m64 by 2, once.

D3/4 SHLym32CL B Valid Valid Multiply r/m32by 2, CL
times,

REXW+D3/4 SHLom64,CL B Valid NE Multiply r/m64 by 2, CL
times.

4354 Vol.28 SAUSAR/SHUSHRShift

INSTRUCTION SET REFERENCE, N-Z

ELSE (* Instruction is SAR or SHR *)
CF - LSB(DEST);

Fl;

IF instruction s SAL or SHL

DEST ¢ DEST # 2;
IF instruction is SAR
THEN
DEST « DEST / 2; (* Signed divide, rount

ELSE (* Instruction is SHR *)
DEST « DEST /2 (* Unsigned divide *)

g toward negative infinity *)

Fl;
Fl;
1emPCOUNT ¢ tempCOUNT - 1;
on;
(* Determine overflow for the various instructions *)
IF (COUNT and countMASK) = 1
THEN
IF instruction is SAL or SHL
OF MSB(DEST) XOR CF:
IF instruction is SAR
OF - 0;
ELSE (* Instruction s SHR *
OF ¢ MSB((empDESU
Fl;
Fl;
ELSE IF (COUNT AND countMASK) = 0
THEN
Al flags unchanged:
ELSE (* COUNT ot 10r 0*)
OF ¢ undefined;
Fl;

FL;

Flags Affected

The CF flag contains the value of the last bit shifted out of the destination operand; it
is undefined for SHL and SHR instructions where the count is greater than or equal to
the size (in bits) of the destination operand. The OF flag is affected only for 1-bit

4358 Vol.2B SAUSAR/SHUSHR—Shift

INSTRUCTION SET REFERENCE, N-Z

Opcode Instruction Op/ 64-Bit Compat/ Description
En Mode LegMode

Ci/aip SHL/m32,imm8 € Valid Valid Multiply r/m32 by 2, imm8
times

REXW +C1/4 SHLr/m64,imm8 € Valid NE. Multiply r/m64 by 2, imm8

ib times,

0075 SHR /.1 A Valid Valid Unsigned divide /m8 by 2,
once.

REX+DO/5 SHRr/m8*™,1 A Vald NE. Unsigned divide /m8 by 2,
once.

02/5 SHRmECL B Valid Valid Unsigned divide /m8by 2,
CL times.

REX+D2/5 SHRom8™,CL B Vald NE. Unsigned divide /m8 by 2,
CL times.

s SHR /8, imm§ € Valid Valid Unsigned divide /m8 by 2,
immé times.

REX+CO/Sib SHR /m8*, immg C Valid NE. Unsigned divide /m8 by 2,
immé times.

01/5 SHRem61 A Valid Valid Unsigned divide r/m16by 2,
once,

0315 SHRmmI6CL B Valid Valid Unsigned divide r/m16by 2,
L times

ansi SHR /16, imm8 C Valid Valid Unsigned divide r/m16by 2,
imm8 times.

1/5 SHRM3Z1 A Vald Valid Unsigned divide r/m32by 2,
once.

REXW+D1/5 SHRr/m641 A Vald NE. Unsigned divide r/m64by 2,
once.

03/5 SHRem3ZCL B Valid Valid Unsigned divide /m32by 2,
CLtimes.

REXW+D3/5 SHRom64CL B Valid NE. Unsigned divide /m64by 2,

arnsio SHR /m32,imm8 € Valid Valid Unsigned divide /m32by 2,
immé times.

REXW+C1/5 SHR/m64,imm8 C Valid NE. Unsigned divide r/m64 by 2,

b imm8 times.

SAUSARISHLISHR—Shift Vol.28 4355

INSTRUCTION SET REFERENCE, N-Z

shifts (see “Description” above); otherwise, it is undefined. The SF, ZF, and PF flags
are set according to the result. If the count is 0, the flags are not affected. For a non-
zero count, the AF flag is undefined.

Protected Mode Exceptions

#GP(0) 1f the destination is located in a non-writable segment.
1f a memory operand effecuve address is outside the CS, DS,
ES, FS, or GS segment limit.
If the DS, ES, FS, urGS register contains a NULL segment

selector.

#55(0) 1f a memory operand effective address is outside the SS
segment fimit.

#PF(fault-code) If a page fault occurs.

#AC(0) 1f alignment checking is enabled and an unaligned memory
reference is made while the current privilege level is 3.

#UD 1f the LOCK prefix is used.

Real-Address Mode Exceptions

#GP 1f a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limi

#s5 1f a memory operand effective address is outside the SS
segment limit.

#UD 1f the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) 1f a memory operand effective address is outside the CS, DS,
ES, FS, or GS segment limit.

#55(0) 1f a memory operand effective address is outside the SS
segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory
reference is mad

#UD 1f the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions

#55(0) Ifa memory. address referencing the SS segment is in a non-
canonical for
#GP(0) If the memory adﬂress is in a non-canonical form.
SAUSARISHLISHR—Shift Vol.2B 4359

INSTRUCTION SET REFERENCE, N-Z

NOTES:
* Not the same form of division as IDIV; rounding is toward negative infinity.

**In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix s
used: AH, BH, CH, DH,

***See IA-32 Architecture Compatibilty section below.

Instruction Operand Encoding

Op/én Operand 1 Operand 2 Operand 3 Operand 4
A ModRMr/m (r, w) 1 NA NA
B ModRM/m (r,w) [<¥0) NA NA
€ ModRM/m (r, w) immg NA NA
Description

Shifts the bits in the first operand (destination operand) to the left or right by the
number of bits specified in the second operand (count operand). Bits shifted beyond
the destination operand boundary are first shifted into the CF flag, then discarded. At
the end of the shift operation, the CF flag contains the last bit shifted out of the desti-
nation operand.

The desnnanon operand can be a register or a memory location. The count operand

iate value o the CL register. The count is masked to 5 bits (or 6 bits
Fin 54-5it mos and REX W s used). The count range is limited to 0 to 31 (or 63 if

64-bit mode and REX.W is used). A special opcode encoding is provided for a count

of 1.

The shift arithmetic left (SAL) and shift logical left (SHL) instructions perform the
same operation; they shift the bits in the destination operand to the left (toward
more significant bit locations). For each shift count, the most significant bit of the
destination operand is shifted into the CF flag, and the least significant bit is cleared
(see Figure 7-7 in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1),

The shift arithmetic right (SAR) and shift logical right (SHR) instructions shift the bits
of the destination operand to the right (toward less significant bit locations). For each
shift count, the least significant bit of the destination operand is shifted into the CF
flag, and the most significant bit s either set or cleared depending on the instruction
type. The SHR instruction clears the most significant bit (see Figure 7-8 in the Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 1); the SAR
instruction sets or clears the most significant bit to correspond to the sign (most
significant bit) of the original value in the destination operand. In effect, the SAR
instruction fills the empty bit position’s shifted value with the sign of the unshifted
value (see Figure 7-9 in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1),

4356 Vol.28 SAUSARISHUSHR—Shift

INSTRUCTION SET REFERENCE, N-2

#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory

reference is made while the current privilege level is 3.
#UD If the LOCK prefix is used.

(taken from Intel Manual)

4360 Vol.28 SAUSARISHUSHR—SHift

Dynamic Symbolic Execution on

Bl naries [Schwartz et al, USENIX'11]

* Finding inputs that explore different paths
after executing 100,000s of assembly
Instructions

%eax if input

Path Predicate

(x>0) A (x*x =0x42424242)

7/20/2011 Carnegie Mellon University 4

Compiler-like Design

Xx86 Binaries

Program

BAP Intermediate
Language

Analysis
Framework

ARM Binaries

SMTLIB

formulas

7/20/2011 Carnegie Mellon University 5

Static & Dynamic Analysis

Xx86 Binaries

Traces Program

Analysis
Framework

BAP Intermediate

Language

ARM Binaries

SMTLIB
formulas

7/20/2011 Carnegie Mellon University 6

A Simple Intermediate Language

e Consists of 17 language constructs

— 7 statements and 10 expressions
program ::= stmt*

stmt c=var ;= exp | jnpexp | cj np exp,exp,exp | assert exp
| | abel lakel_kind | addr address | speci al string

* Our binary symbolic executor consists of ~250
lines of OCaml code

7/20/2011 Carnegie Mellon University 7

Extensible Program Analysis

AST & SSA Code

x86 Binaries Representations

Graph
Representations

BAP Intermediate h
Analysis
Language Civmimnmiaimn 1,

Dataflow Analysis

Traces

ARM Binaries

SMTLIB

Program & Formula
Optimizations

formulas VC Generation

7/20/2011 Carnegie Mellon University 8

Verification Condition Generation

* BAP provides support for the following VC
generation algorithms:

— Dijkstra’s WP

— Flanagan & Saxe’s WP

— Directionless WP

— Forward Symbolic Execution

* Interfaces to SMT solvers
— Support for SMTLIB1 & SMTLIB2 formats

7/20/2011 Carnegie Mellon University

Static Checking of Safety Properties

[Jager et al, TR'10]
* GNU coreutils leaf vl &
functions
— Integer overflows
— Memory overwrites -
* Formula 5
optimizations |
improved
performanceupto -
8x . R Nunyan
35 40 45 50 35 40 |§Slgéﬂ_si;;);g 4o 45 50 35 40 45 50

7/20/2011 Carnegie Mellon University 10

7/20/2011

BAP in research

Carnegie Mellon University

11

Q: Return-Oriented Programming
[Schwartz et al, USENIX'11]

* Finding byte-sequences (gadgets) that
perform certain actions

Using WP to verify the
gadget computations

Move Semantics:
Outreg <- Inreg

SO T - vvreTa

Inreg = eax, Outreg = ebx

aeul $1, %eax, %ebx

Random Testing to make

Lifting Byte Sequences gadget finding faster

to the IL

7/20/2011 Carnegie Mellon University 12

Many Applications in Security

Don’t redo the engineering. Do the science.

REVERSE
ATTACK MALWARE ENGINEERING
PREVENTION ANALYSIS
EXPLOIT

GENERATION

7/20/2011 Carnegie Mellon University 13

Are we alone?

Vme
[Brumley et aI]. |

_‘[Balakrlshna et al]

- BINCOA
[Bardinetal]

‘ . Jakstab ,
. R [Klnderet al]

Conclusion

e BAP is the newest incarnation of our
framework for binary analysis

* BAP comes with a variety of algorithms and
features to make analysis easier

* You can download it for free at:

http://bap.ece.cmu.edu/

BAP 0.3 just came out!

http://bap.ece.cmu.edu/
http://bap.ece.cmu.edu/
http://bap.ece.cmu.edu/

Thank you!

thanassis@cmu.edu
http://www.ece.cmu.edu/~aavgerin
http://bap.ece.cmu.edu/

Questions?

mailto:thanassis@cmu.edu
http://www.ece.cmu.edu/~aavgerin
http://bap.ece.cmu.edu/

