
© 2014 Carnegie Mellon University

Abstraction Recovery for Scalable
Static Binary Analysis

Edward J. Schwartz

Software Engineering Institute

Carnegie Mellon University

12/9/2014

PPREW: Abstraction Recovery

1

© 2014 Carnegie Mellon University

The Gap Between
Binary and Source Code

push %ebp

mov %esp,%ebp

sub $0x10,%esp

movl $0x1,-0x4(%ebp)

jmp 1d <f+0x1d>

mov -0x4(%ebp),%eax

imul 0x8(%ebp),%eax

mov %eax,-0x4(%ebp)

subl $0x1,0x8(%ebp)

cmpl $0x1,0x8(%ebp)

jg f <f+0xf>

mov -0x4(%ebp),%eax

leave

ret

int f(int c) {

int accum = 1;

for (; c > 1; c--) {

accum = accum * c;

}

return accum;

}

Functions

Variables

Types

Control
Flow

12/9/2014

PPREW: Abstraction Recovery

2

© 2014 Carnegie Mellon University

Automatic extraction of
facts about binary
programs without

executing them

Static Binary Analysis

12/9/2014

PPREW: Abstraction Recovery

3

© 2014 Carnegie Mellon University

• High Coverage

– Reason about most or all possible executions

• Safe

– Does not execute (possibly unsafe) code

• Widely Applicable

– Source code not needed

– Useful for end-users, researchers, sysadmins

Static Binary Analysis Strengths

12/9/2014

PPREW: Abstraction Recovery

4

© 2014 Carnegie Mellon University

Primary Challenge: Scalability

Static Source Code
Analysis Tools

Largest
Program

Static Binary Code
Analysis Tools

Largest Program

12/9/2014

PPREW: Abstraction Recovery

5

© 2014 Carnegie Mellon University

The Gap Between
Binary and Source Code

push %ebp

mov %esp,%ebp

sub $0x10,%esp

movl $0x1,-0x4(%ebp)

jmp 1d <f+0x1d>

mov -0x4(%ebp),%eax

imul 0x8(%ebp),%eax

mov %eax,-0x4(%ebp)

subl $0x1,0x8(%ebp)

cmpl $0x1,0x8(%ebp)

jg f <f+0xf>

mov -0x4(%ebp),%eax

leave

ret

int f(int c) {

int accum = 1;

for (; c > 1; c--) {

accum = accum * c;

}

return accum;

}

Functions

Variables

Types

Control
Flow

12/9/2014

PPREW: Abstraction Recovery

6

Abstraction Recovery

1. Choose
abstractions

2. Recover
abstractions

3. Scalable, high-
level reasoning

Static Source
Code Analysis

Decompilation
• Functions
• Types
• Variables

int f (int x) {
int y = 1;
while (x > y) {

y++;

010100101010101
001010110111010
101001010101010
010100101010101

Compiled C
Programs

© 2014 Carnegie Mellon University

Reverse Engineering

12/9/2014

PPREW: Abstraction Recovery

8

“Reverse engineering is the process of
analyzing a subject system to create
representations of the system at a
higher level of abstraction.”

Chikofsky and Cross
Software Reuse and Reverse Engineering in Practice

© 2014 Carnegie Mellon University

Reverse Engineering

12/9/2014

PPREW: Abstraction Recovery

9

Abstraction Binary

More Abstract
Less Detail

Abstraction Recovery

Static Source
Code Analysis

1. Choose
abstractions

2. Recover
abstractions

3. Scalable, high-
level reasoning

Decompilation
• Functions
• Types
• Variables

int f (int x) {
int y = 1;
while (x > y) {

y++;

010100101010101
001010110111010
101001010101010
010100101010101

Compiled C
Programs

Reverse Engineering

© 2014 Carnegie Mellon University

• Introduction

• Recovering Abstractions

– C abstractions (Phoenix Decompiler)

– Gadget abstractions (Q ROP Compiler)

• Future Work and Conclusions

Outline

12/9/2014

PPREW: Abstraction Recovery

11

int f (int x) {
int y = 1;
while (x > y) {

y++;
}

return y;

010100101010101
001010110111010
101001010101010
101111100010100
010101101001010
100010010101101
010101011010111

Original
Source

int f (int a) {
int v = 1;
while (a > v++)
{}

return v;

Recovered
Source

Compiled
Binary

12
12/9/2014

PPREW: Abstraction Recovery

© 2014 Carnegie Mellon University

• Designed for abstraction recovery

– Correctness (new)

• Prior work: focus on manual reverse engineering

– Effective abstraction recovery

• Design: series of stages

– Each stage recovers a different abstraction

– Some are new; some are not

The Phoenix Decompiler

12/9/2014

PPREW: Abstraction Recovery

13

© 2014 Carnegie Mellon University

Phoenix Overview

010100101010101
001010110111010
101001010101010
101111100010100
010101101001010
100010010101101
010101011010111

CFG Recovery
Variable and

Type
Recovery

Control
Flow

Structuring

Source-code
Output or
Analysis

int f (int x) {
int y = 1;
while (x > y) {
y++;

}

return y;

New in Phoenix

12/9/2014

PPREW: Abstraction Recovery

14

© 2014 Carnegie Mellon University

Compilation
¬ee

Control Flow Structuring

if (e)

{…;}

else

{…;}

if (e)

{…;}

else

{…;}

¬ee
Control Flow
Structuring

12/9/2014

PPREW: Abstraction Recovery

15

© 2014 Carnegie Mellon University

• Iteratively match patterns to CFG

– Collapse matching regions

Structural Analysis

B2

If-then

B1

B2

B1

While

B2

B1

Sequence

12/9/2014

PPREW: Abstraction Recovery

16

© 2014 Carnegie Mellon University

Structural Analysis Example

WHILE

SEQ

ITE
1 SEQ

1

PPREW: Abstraction Recovery

...;

while (...) { if (...) {...} else {...} };

...; ...;

12/9/2014 17

© 2014 Carnegie Mellon University

1. Correctness

Structural Analysis Property Checklist

12/9/2014

PPREW: Abstraction Recovery

18

© 2014 Carnegie Mellon University

1. Correctness

– Not originally intended for decompilation

– Structure can be incorrect for decompilation

Structural Analysis Property Checklist

12/9/2014

PPREW: Abstraction Recovery

19

© 2014 Carnegie Mellon University

• Reductions preserve meaning of program

Semantics Preservation

x=1y=2

x≠1
y≠2

NATURAL
LOOP

y=2 x=1

Non-determinism

12/9/2014

PPREW: Abstraction Recovery

20

© 2014 Carnegie Mellon University

1. Correctness

– Not originally intended for decompilation

– Structure can be incorrect for decompilation

2. Effective abstraction recovery

Structural Analysis Property Checklist

12/9/2014

PPREW: Abstraction Recovery

21

© 2014 Carnegie Mellon University

1. Correctness

– Not originally intended for decompilation

– Structure can be incorrect for decompilation

2. Effective abstraction recovery

– Graceless failures for unstructured programs
• break, continue, and gotos

• Failures cascade to large subgraphs

Structural Analysis Property Checklist

12/9/2014

PPREW: Abstraction Recovery

22

© 2014 Carnegie Mellon University

Unrecovered Structure

12/9/2014

PPREW: Abstraction Recovery

23

UNKNOWN

This break edge
prevents progress

SEQ

s1;

while (e1) {

if (e2) { break; }

s2;

}

s3;

s1;

L1: if (e1) { goto L2; }

else { goto L4; }

L2: if (e2) { goto L4; }

L3: s2; goto L1;

L4: s3;

Original Decompiled

© 2014 Carnegie Mellon University

• Remove edges that are preventing a match

– Represent in decompiled source as break, goto,
continue

– Run on remaining graph

Iterative Refinement

12/9/2014

PPREW: Abstraction Recovery

Allows structuring algorithm to make more progress

24

© 2014 Carnegie Mellon University

Iterative Refinement

12/9/2014

PPREW: Abstraction Recovery

25

s1;

while (e1) {

if (e2) { break; }

s2;

}

s3;

s1;

while (e1) {

if (e2) { break; }

s2;

}

s3;

BREAK
SEQ
1

WHILE

SEQ

Original Decompiled

© 2014 Carnegie Mellon University

• How does Phoenix compare with state of the
art?

• Measure impact of:
– Semantics preservation
– Iterative refinement

• Other decompilers
– Hex-Rays (industry state of the art)
– Boomerang (academic state of the art)

Large Scale Experiment Details

12/9/2014

PPREW: Abstraction Recovery

26

© 2014 Carnegie Mellon University

• How does Phoenix compare with state of the
art?

• Measure impact of:
– Semantics preservation
– Iterative refinement

• Other decompilers
– Hex-Rays (industry state of the art)
– Boomerang (academic state of the art)

• Did not terminate in <1 hour for most programs

Large Scale Experiment Details

12/9/2014

PPREW: Abstraction Recovery

27

© 2014 Carnegie Mellon University

• GNU coreutils 8.17, compiled with gcc
– Programs of varying complexity

– Test suite

• Metrics
– Correctness

• Number of decompiled utilities that pass unit tests

• Has not been done before on large scale!

– Control-flow structure recovery
• Count number of goto statements

Large Scale Experiment Details

12/9/2014

PPREW: Abstraction Recovery

28

© 2014 Carnegie Mellon University

Number of Correct Utilities

12/9/2014

PPREW: Abstraction Recovery

29

60

28

0

10

20

30

40

50

60

70

Phoenix Hex-Rays

© 2014 Carnegie Mellon University

Number of Correct Utilities

12/9/2014

PPREW: Abstraction Recovery

30

60

46

0

10

20

30

40

50

60

70

Phoenix Phoenix (w/o semantics
preservation)

© 2014 Carnegie Mellon University

Number of Correct Utilities

12/9/2014

PPREW: Abstraction Recovery

31

28

60

46

0

20

40

60

80

100

120

Hex-Rays Phoenix Phoenix (w/o semantics
preservation)

All Utilities

107

© 2014 Carnegie Mellon University

Correctness

• Any incorrect abstraction can cause
incorrect decompilation
– Hex Rays

• ?

– Phoenix

• All (known) correctness errors attributed to type
recovery
– Undiscovered variables

• No known problems in control flow structuring

12/9/2014

PPREW: Abstraction Recovery

32

© 2014 Carnegie Mellon University

Control Flow Structure:
Gotos Emitted (Fewer is Better)

40

51

Phoenix Hex-Rays

12/9/2014

PPREW: Abstraction Recovery

33

© 2014 Carnegie Mellon University

Control Flow Structure:
Gotos Emitted (Fewer is Better)

40

1229

51

Phoenix Phoenix (w/o iterative
refinement)

Hex-Rays

12/9/2014

PPREW: Abstraction Recovery

34

© 2014 Carnegie Mellon University

• Introduction

• Recovering Abstractions

– C abstractions (Phoenix Decompiler)

– Gadget abstractions (Q ROP Compiler)

• Future Work and Conclusions

Outline

12/9/2014

PPREW: Abstraction Recovery

35

© 2014 Carnegie Mellon University

• All major operating systems
employ defenses

– DEP: Data Execution Prevention

– ASLR: Address Space Layout Randomization

• Make reliable exploitation difficult

– How difficult?

OS Defenses

12/9/2014

PPREW: Abstraction Recovery

36

© 2014 Carnegie Mellon University

Simple Control-Flow Hijack Exploit

Computation

Shellcode

Exploit

Control

PointerPadding

12/9/2014

PPREW: Abstraction Recovery

37

© 2014 Carnegie Mellon University

Data Execution Prevention (DEP)

Shellcode

Exploit

PointerPadding

DEP: Buffers cannot be writable
and executable

User input is
non-executable

Crash

12/9/2014

PPREW: Abstraction Recovery

38

© 2014 Carnegie Mellon University

Bypassing DEP

• Goal: Specify exploit computation even
when DEP is enabled

• Return-oriented Programming
[Shacham 2007]

– Use existing instructions from program it to
create self-contained gadgets

– Chain gadgets together to encode computation

12/9/2014

PPREW: Abstraction Recovery

39

© 2014 Carnegie Mellon University

Return-oriented Programming

Example: How can we write to
memory without shellcode?

12/9/2014

PPREW: Abstraction Recovery

40

41

Return-oriented Programming

12/9/2014
PPREW: Abstraction Recovery

addr1
pop %eax

ret

addr2
pop %ebx

ret

addr3
movl %eax, (%ebx)

ret

Exploit
nextaddr

addr3
address
addr2

eax
ebx

stack
value

Gadgets

© 2014 Carnegie Mellon University

Load to
register

Store to
memory

ArithmeticLoad from
memory

Gadgets as Abstractions

• Gadgets are behavior specifications
– Load constant

– Store to memory

– Don’t need to reason about low-level behavior to combine them

12/9/2014

PPREW: Abstraction Recovery

42

© 2014 Carnegie Mellon University

Address Space Layout Randomization (ASLR)
ASLR disabled

Exploit Gadgets

Gadgets Exploit

Crash

ASLR enabled

ASLR: Addresses are unpredictable
12/9/2014

PPREW: Abstraction Recovery

43

© 2014 Carnegie Mellon University

• Randomized code can’t be used for ROP

• But ASLR implementations do not
randomize all code…

Return-oriented Programming + ASLR

12/9/2014

PPREW: Abstraction Recovery

44

© 2014 Carnegie Mellon University

(Typical) Randomized Code in Linux

Randomized

Stack

Heap

Unrandomized

Executable

Program
Image

Libc

12/9/2014

PPREW: Abstraction Recovery

45

© 2014 Carnegie Mellon University

• Program image is often the only
unrandomized code

– Small

– Program-specific

• How much unrandomized code does an
attacker need to use ROP?

Modern Exploitation using ROP

12/9/2014

PPREW: Abstraction Recovery

46

We need a graduate student with a lot of free time
We need automatic ROP techniques that can work

with the program image

© 2014 Carnegie Mellon University

Q: Automatic ROP System

12/9/2014

PPREW: Abstraction Recovery

47

© 2014 Carnegie Mellon University

12/9/2014

PPREW: Abstraction Recovery

48

Q: ROP Overview

Source P

Computation Arrangement

Discovery

Assignment

Abstraction
Recovery

High-level
Reasoning

© 2014 Carnegie Mellon University

• Discovery: Does instruction sequence do
something we can use for our computation?

• Fast randomized test for every program
location (thousands or millions)

Gadget Discovery

Vulnerable P
sbb %eax, %eax;
neg %eax; ret

12/9/2014

PPREW: Abstraction Recovery

49

© 2014 Carnegie Mellon University

Randomized Testing

sbb %eax, %eax;
neg %eax; ret

EAX 0x0298a7bc

CF 0x1

ESP 0x81e4f104

EAX 0x1

ESP 0x81e4f108

EBX 0x0298a7bc

OutReg <- InReg

Semantic
Definition
For Move

B
ef

o
re

A
ft

er

12/9/2014

PPREW: Abstraction Recovery

50

© 2014 Carnegie Mellon University

Q’s Semantic Definitions/
Gadget Types

Gadget Type Semantic Definition Real World Example

MoveRegG Out <- In xchg %eax, %ebp; ret

LoadConstG Out <- Constant pop %ebp; ret

ArithmeticG Out <- In1 + In2 add %edx, %eax; ret

LoadMemG Out <- M[Addr + Offset] movl 0x60(%eax), %eax;
ret

StoreMemG M[Addr + Offset] <- In mov %dl, 0x13(%eax); ret

ArithmeticLoadG Out +<- M[Addr + Offset] add 0x1376dbe4(%ebx),
%ecx; (…); ret

ArithmeticStoreG M[Addr + Offset] +<- In add %al,
0x5de474c0(%ebp); ret

12/9/2014

PPREW: Abstraction Recovery

51

© 2014 Carnegie Mellon University

• Randomized testing quickly rules out
non-gadgets
– Fast

– Enables more expensive second stage

• Second stage: program verification

Randomized Testing

12/9/2014

PPREW: Abstraction Recovery

52

© 2014 Carnegie Mellon University

Connection to Program Verification

12/9/2014

PPREW: Abstraction Recovery

53

sbb %eax, %eax
neg %eax; ret

EAX <- CF

sum = 0
while (n > 0) {

sum += n;
n--;

}

sum = i
i=0

n

å

Does the post-condition always hold
after executing program?

© 2014 Carnegie Mellon University

Gadget Verification

12/9/2014

PPREW: Abstraction Recovery

54

sbb %eax, %eax
neg %eax; ret

EAX <- CF

Weakest
Precondition Θ

Θ Validity Check
Valid (Gadget)

Invalid (not
Gadget)

© 2014 Carnegie Mellon University

• Q is better at finding gadgets than I am!

Semantic-based Gadget Discovery

imul $1, %eax, %ebx
ret

Move %eax to %ebx

lea (%ebx,%ecx,1), %eax
ret

Store %ebx+%ecx in %eax

sbb %eax, %eax; neg %eax
ret

Move carry flag to %eax

12/9/2014

PPREW: Abstraction Recovery

55

© 2014 Carnegie Mellon University 56
12/9/2014

PPREW: Abstraction Recovery

Q: ROP Overview

Source P

Computation Arrangement

Discovery

Assignment

Abstraction
Recovery

High-level
Reasoning

© 2014 Carnegie Mellon University

How much unrandomized code is
sufficient to create ROP payloads?
– Detail: payloads call any functions in libc

– system, execv, connect, mprotect

Research Questions

12/9/2014

PPREW: Abstraction Recovery

57

© 2014 Carnegie Mellon University

ROP Success Probability
P

ro
b

ab
ili

ty
 t

h
at

 a
tt

ac
k

w
o

rk
s

Call libc functions in 80% of
programs >= true (20KB)

Program Size (bytes)

12/9/2014

PPREW: Abstraction Recovery

58

© 2014 Carnegie Mellon University

Can Q automatically add ROP
payloads to existing exploits

for real programs?

Research Questions

12/9/2014

PPREW: Abstraction Recovery

59

Real Exploits

• Q was able to automatically add ROP to nine
exploits downloaded from exploit-db.com

12/9/2014

PPREW: Abstraction Recovery

60

Name Total
Time

OS

Free CD to MP3 Converter 130s Windows 7

Fatplayer 133s Windows 7

A-PDF Converter 378s Windows 7

A-PDF Converter (SEH exploit) 357s Windows 7

MP3 CD Converter Pro 158s Windows 7

rsync 65s Linux

opendchub 225s Linux

gv 237s Linux

Proftpd 44s Linux

© 2014 Carnegie Mellon University

Demo!

12/9/2014

PPREW: Abstraction Recovery

61

© 2014 Carnegie Mellon University

• Introduction

• Recovering Abstractions

– C abstractions (Phoenix Decompiler)

– Gadget abstractions (Q ROP Compiler)

• Future Work and Conclusions

Outline

12/9/2014

PPREW: Abstraction Recovery

62

© 2014 Carnegie Mellon University

Abstraction Recovery Questions

• Systems: How do we build systems that
– Recover abstractions?

– Use abstractions?

• Theory: When is it possible to recover abstractions?
– Observable behaviors preserved by compilation

• Scalability: How does recovering and utilizing
abstractions improve scalability?
– ROP (150x)

– C verification (15x)

12/9/2014

PPREW: Abstraction Recovery

63

© 2014 Carnegie Mellon University

Future Work

• Certified decompilation
– Prove that binary C translation is correct

• Optimal abstraction recovery
– Provably optimal algorithms (i.e., minimum gotos)

• Additional abstractions & architectures
– C++, ARM, Dalvik

12/9/2014

PPREW: Abstraction Recovery

64

© 2014 Carnegie Mellon University

Thanks to My Great Co-authors

12/9/2014

PPREW: Abstraction Recovery

65

Thanassis
Avgerinos

David
Brumley

Maverick
Woo

JongHyup
Lee

© 2014 Carnegie Mellon University

Conclusion

• Abstraction Recovery
– Recovering abstractions helps static binary analysis

• Phoenix decompiler
– Goal: Correct, effective decompilation

– New control-flow structuring algorithm

• Q ROP Compiler
– Takeaway: Unrandomized code is dangerous

– 20KB makes DEP+ASLR ineffective

12/9/2014

PPREW: Abstraction Recovery

66

© 2014 Carnegie Mellon University

• Questions?

Edward J. Schwartz

eschwartz@cert.org

http://www.ece.cmu.edu/~ejschwar

Thanks

12/9/2014

PPREW: Abstraction Recovery

67

© 2014 Carnegie Mellon University

12/9/2014

PPREW: Abstraction Recovery

68

