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The Gap Between 
Binary and Source Code

push %ebp

mov %esp,%ebp

sub $0x10,%esp

movl $0x1,-0x4(%ebp)

jmp 1d <f+0x1d>

mov -0x4(%ebp),%eax

imul 0x8(%ebp),%eax

mov %eax,-0x4(%ebp)

subl $0x1,0x8(%ebp)

cmpl $0x1,0x8(%ebp)

jg f <f+0xf>

mov -0x4(%ebp),%eax

leave

ret

int f(int c) {

int accum = 1;

for (; c > 1; c--) {

accum = accum * c;

}

return accum;

}

Functions

Variables

Types

Control
Flow

12/9/2014

PPREW: Abstraction Recovery

2



© 2014 Carnegie Mellon University

Automatic extraction of 
facts about binary 
programs without 

executing them

Static Binary Analysis

12/9/2014

PPREW: Abstraction Recovery

3



© 2014 Carnegie Mellon University

• High Coverage

– Reason about most or all possible executions

• Safe

– Does not execute (possibly unsafe) code

• Widely Applicable

– Source code not needed

– Useful for end-users, researchers, sysadmins

Static Binary Analysis Strengths
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Primary Challenge: Scalability

Static Source Code 
Analysis Tools

Largest
Program

Static Binary Code
Analysis Tools

Largest Program
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The Gap Between 
Binary and Source Code

push %ebp

mov %esp,%ebp

sub $0x10,%esp

movl $0x1,-0x4(%ebp)
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mov -0x4(%ebp),%eax

imul 0x8(%ebp),%eax

mov %eax,-0x4(%ebp)

subl $0x1,0x8(%ebp)

cmpl $0x1,0x8(%ebp)

jg f <f+0xf>

mov -0x4(%ebp),%eax

leave

ret

int f(int c) {

int accum = 1;

for (; c > 1; c--) {

accum = accum * c;

}

return accum;

}

Functions

Variables

Types

Control
Flow
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Abstraction Recovery

1. Choose 
abstractions

2. Recover
abstractions

3. Scalable, high-
level reasoning

Static Source
Code Analysis

Decompilation
• Functions
• Types
• Variables

int f (int x) {
int y = 1;
while (x > y) {

y++;

010100101010101
001010110111010
101001010101010
010100101010101

Compiled C 
Programs
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Reverse Engineering
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“Reverse engineering is the process of 
analyzing a subject system to create 
representations of the system at a 
higher level of abstraction.”

Chikofsky and Cross
Software Reuse and Reverse Engineering in Practice
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Reverse Engineering
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Abstraction Binary

More Abstract
Less Detail



Abstraction Recovery

Static Source
Code Analysis

1. Choose 
abstractions

2. Recover
abstractions

3. Scalable, high-
level reasoning

Decompilation
• Functions
• Types
• Variables

int f (int x) {
int y = 1;
while (x > y) {

y++;

010100101010101
001010110111010
101001010101010
010100101010101

Compiled C 
Programs

Reverse Engineering
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• Introduction

• Recovering Abstractions

– C abstractions (Phoenix Decompiler)

– Gadget abstractions (Q ROP Compiler)

• Future Work and Conclusions

Outline
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int f (int x) {
int y = 1;
while (x > y) {

y++;
}

return y;

010100101010101
001010110111010
101001010101010
101111100010100
010101101001010
100010010101101
010101011010111

Original
Source

int f (int a) {
int v = 1;
while (a > v++) 
{}

return v;

Recovered
Source

Compiled
Binary

12
12/9/2014
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• Designed for abstraction recovery

– Correctness (new)

• Prior work: focus on manual reverse engineering

– Effective abstraction recovery

• Design: series of stages

– Each stage recovers a different abstraction

– Some are new; some are not

The Phoenix Decompiler
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Phoenix Overview

010100101010101
001010110111010
101001010101010
101111100010100
010101101001010
100010010101101
010101011010111

CFG Recovery
Variable and 

Type
Recovery

Control
Flow

Structuring

Source-code 
Output or 
Analysis

int f (int x) {
int y = 1;
while (x > y) {
y++;

}

return y;

New in Phoenix
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Compilation
¬ee

Control Flow Structuring

if (e)

{…;} 

else

{…;}

if (e)

{…;} 

else

{…;}

¬ee
Control Flow 
Structuring
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• Iteratively match patterns to CFG

– Collapse matching regions

Structural Analysis

B2

If-then

B1

B2

B1

While

B2

B1

Sequence
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Structural Analysis Example

WHILE

SEQ

ITE
1 SEQ

1

PPREW: Abstraction Recovery

...;

while (...) { if (...) {...} else {...} };

...; ...;
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1. Correctness

Structural Analysis Property Checklist
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1. Correctness

– Not originally intended for decompilation

– Structure can be incorrect for decompilation

Structural Analysis Property Checklist
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• Reductions preserve meaning of program

Semantics Preservation

x=1y=2

x≠1
y≠2

NATURAL
LOOP

y=2 x=1

Non-determinism
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1. Correctness

– Not originally intended for decompilation

– Structure can be incorrect for decompilation

2. Effective abstraction recovery

Structural Analysis Property Checklist
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1. Correctness

– Not originally intended for decompilation

– Structure can be incorrect for decompilation

2. Effective abstraction recovery

– Graceless failures for unstructured programs
• break, continue, and gotos

• Failures cascade to large subgraphs

Structural Analysis Property Checklist
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Unrecovered Structure
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UNKNOWN

This break edge 
prevents progress

SEQ

s1;

while (e1) {

if (e2) { break; }

s2;

}

s3;

s1;

L1: if (e1) { goto L2; }     

else { goto L4; }

L2: if (e2) { goto L4; }

L3: s2; goto L1;

L4: s3;

Original Decompiled
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• Remove edges that are preventing a match

– Represent in decompiled source as break, goto, 
continue

– Run on remaining graph

Iterative Refinement

12/9/2014
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Allows structuring algorithm to make more progress
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Iterative Refinement
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s1;

while (e1) {

if (e2) { break; }

s2;

}

s3;

s1;

while (e1) {

if (e2) { break; }

s2;

}

s3;

BREAK
SEQ
1

WHILE

SEQ

Original Decompiled
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• How does Phoenix compare with state of the 
art?

• Measure impact of:
– Semantics preservation
– Iterative refinement

• Other decompilers
– Hex-Rays (industry state of the art)
– Boomerang (academic state of the art) 

Large Scale Experiment Details
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• How does Phoenix compare with state of the 
art?

• Measure impact of:
– Semantics preservation
– Iterative refinement

• Other decompilers
– Hex-Rays (industry state of the art)
– Boomerang (academic state of the art) 

• Did not terminate in <1 hour for most programs

Large Scale Experiment Details
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• GNU coreutils 8.17, compiled with gcc
– Programs of varying complexity

– Test suite

• Metrics
– Correctness

• Number of decompiled utilities that pass unit tests

• Has not been done before on large scale!

– Control-flow structure recovery
• Count number of goto statements

Large Scale Experiment Details
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Number of Correct Utilities
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Number of Correct Utilities
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Number of Correct Utilities
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Correctness

• Any incorrect abstraction can cause 
incorrect decompilation
– Hex Rays

• ?

– Phoenix

• All (known) correctness errors attributed to type 
recovery
– Undiscovered variables

• No known problems in control flow structuring

12/9/2014
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Control Flow Structure:
Gotos Emitted (Fewer is Better)

40

51

Phoenix Hex-Rays
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Control Flow Structure:
Gotos Emitted (Fewer is Better)

40

1229

51

Phoenix Phoenix (w/o iterative
refinement)

Hex-Rays
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• Introduction

• Recovering Abstractions

– C abstractions (Phoenix Decompiler)

– Gadget abstractions (Q ROP Compiler)

• Future Work and Conclusions

Outline
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• All major operating systems 
employ defenses

– DEP: Data Execution Prevention

– ASLR: Address Space Layout Randomization

• Make reliable exploitation difficult

– How difficult?

OS Defenses
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Simple Control-Flow Hijack Exploit

Computation

Shellcode

Exploit

Control

PointerPadding
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Data Execution Prevention (DEP)

Shellcode

Exploit

PointerPadding

DEP: Buffers cannot be writable 
and executable

User input is 
non-executable

Crash
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Bypassing DEP

• Goal: Specify exploit computation even 
when DEP is enabled

• Return-oriented Programming
[Shacham 2007]

– Use existing instructions from program it to 
create self-contained gadgets

– Chain gadgets together to encode computation
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Return-oriented Programming

Example: How can we write to 
memory without shellcode?
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Return-oriented Programming

12/9/2014
PPREW: Abstraction Recovery

addr1
pop %eax

ret

addr2
pop %ebx

ret

addr3
movl %eax, (%ebx)

ret

Exploit
nextaddr

addr3
address
addr2

eax
ebx

stack
value

Gadgets
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Load to 
register

Store to 
memory

ArithmeticLoad from 
memory

Gadgets as Abstractions

• Gadgets are behavior specifications
– Load constant

– Store to memory

– Don’t need to reason about low-level behavior to combine them
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Address Space Layout Randomization (ASLR)
ASLR disabled

Exploit Gadgets

Gadgets Exploit

Crash

ASLR enabled

ASLR: Addresses are unpredictable
12/9/2014
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• Randomized code can’t be used for ROP

• But ASLR implementations do not 
randomize all code…

Return-oriented Programming + ASLR
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(Typical) Randomized Code in Linux

Randomized

Stack

Heap

Unrandomized

Executable

Program 
Image

Libc
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• Program image is often the only 
unrandomized code

– Small

– Program-specific

• How much unrandomized code does an 
attacker need to use ROP?

Modern Exploitation using ROP
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We need a graduate student with a lot of free time
We need automatic ROP techniques that can work 

with the program image
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Q: Automatic ROP System
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Q: ROP Overview

Source P

Computation Arrangement

Discovery

Assignment

Abstraction 
Recovery

High-level
Reasoning
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• Discovery: Does instruction sequence do 
something we can use for our computation?

• Fast randomized test for every program 
location (thousands or millions)

Gadget Discovery

Vulnerable P
sbb %eax, %eax; 
neg %eax; ret 
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Randomized Testing

sbb %eax, %eax; 
neg %eax; ret 

EAX 0x0298a7bc

CF 0x1

ESP 0x81e4f104

EAX 0x1

ESP 0x81e4f108

EBX 0x0298a7bc

OutReg <- InReg

Semantic 
Definition
For Move

B
ef

o
re

A
ft

er
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Q’s Semantic Definitions/
Gadget Types

Gadget Type Semantic Definition Real World Example

MoveRegG Out <- In xchg %eax, %ebp; ret

LoadConstG Out <- Constant pop %ebp; ret

ArithmeticG Out <- In1 + In2 add %edx, %eax; ret

LoadMemG Out <- M[Addr + Offset] movl 0x60(%eax), %eax; 
ret

StoreMemG M[Addr + Offset] <- In mov %dl, 0x13(%eax); ret

ArithmeticLoadG Out +<- M[Addr + Offset] add  0x1376dbe4(%ebx), 
%ecx; (…); ret

ArithmeticStoreG M[Addr + Offset] +<- In add    %al, 
0x5de474c0(%ebp); ret 
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• Randomized testing quickly rules out 
non-gadgets
– Fast

– Enables more expensive second stage

• Second stage: program verification

Randomized Testing
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Connection to Program Verification
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sbb %eax, %eax
neg %eax; ret

EAX <- CF

sum = 0
while (n > 0) {

sum += n;
n--;

}

sum = i
i=0

n

å

Does the post-condition always hold 
after executing program?
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Gadget Verification
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sbb %eax, %eax
neg %eax; ret

EAX <- CF

Weakest 
Precondition Θ

Θ Validity Check
Valid (Gadget)

Invalid (not 
Gadget)
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• Q is better at finding gadgets than I am!

Semantic-based Gadget Discovery

imul $1, %eax, %ebx
ret

Move %eax to %ebx

lea (%ebx,%ecx,1), %eax
ret

Store %ebx+%ecx in %eax

sbb %eax, %eax; neg %eax
ret

Move carry flag to %eax
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Q: ROP Overview

Source P

Computation Arrangement

Discovery

Assignment

Abstraction 
Recovery

High-level
Reasoning
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How much unrandomized code is 
sufficient to create ROP payloads?
– Detail: payloads call any functions in libc

– system, execv, connect, mprotect

Research Questions
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ROP Success Probability
P

ro
b

ab
ili

ty
 t

h
at

 a
tt

ac
k 

w
o

rk
s

Call libc functions in 80% of 
programs >= true (20KB)

Program Size (bytes)
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Can Q automatically add ROP 
payloads to existing exploits

for real programs?

Research Questions
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Real Exploits

• Q was able to automatically add ROP to nine 
exploits downloaded from exploit-db.com
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Name Total
Time

OS

Free CD to MP3 Converter 130s Windows 7

Fatplayer 133s Windows 7

A-PDF Converter 378s Windows 7

A-PDF Converter (SEH exploit) 357s Windows 7

MP3 CD Converter Pro 158s Windows 7

rsync 65s Linux

opendchub 225s Linux

gv 237s Linux

Proftpd 44s Linux
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Demo!
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• Introduction

• Recovering Abstractions

– C abstractions (Phoenix Decompiler)

– Gadget abstractions (Q ROP Compiler)

• Future Work and Conclusions

Outline
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Abstraction Recovery Questions

• Systems: How do we build systems that 
– Recover abstractions?

– Use abstractions?

• Theory: When is it possible to recover abstractions?
– Observable behaviors preserved by compilation

• Scalability: How does recovering and utilizing 
abstractions improve scalability?
– ROP (150x)

– C verification (15x)
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Future Work

• Certified decompilation
– Prove that binary  C translation is correct

• Optimal abstraction recovery
– Provably optimal algorithms (i.e., minimum gotos)

• Additional abstractions & architectures
– C++, ARM, Dalvik
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Conclusion

• Abstraction Recovery
– Recovering abstractions helps static binary analysis

• Phoenix decompiler
– Goal: Correct, effective decompilation

– New control-flow structuring algorithm

• Q ROP Compiler
– Takeaway: Unrandomized code is dangerous

– 20KB makes DEP+ASLR ineffective
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• Questions?

Edward J. Schwartz

eschwartz@cert.org

http://www.ece.cmu.edu/~ejschwar

Thanks 
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