PPREW: Abstraction Recovery

=== Software Engineering Institute | Carnegie Mellon University 12/9/2014

b © 2014 Carnegie Mellon University

The Gap Between
Binary and Source Code

push %ebp
mov %esp, %ebp

sub $0x10,%esp Functions Types
movl $0x1,-0x4(%ebp)

jmp 1d <f+0x1d>

mov -0x4(%ebp) ,%eax

imul ©x8(%ebp), %eax _ int f(int c) {

mov %eax,-0x4(%ebp) Variables int accum = 1;

subl $0x1,0x8(%ebp) for (; ¢ > 1; c--) {
cmpl $0x1,0x8(%ebp) accum = accum * c;
jg f <f+oxf> }

mov -0x4(%ebp) , %eax Control return accum;

leave Flow }

ret

_— PPREW: Abstraction Recovery

=== Software Engineering Institute | Carnegie Mellon University 12/9/2014

© 2014 Carnegie Mellon University

Static Binary Analysis

Automatic extraction of
facts about binary
programs without

executing them

REW: Abstraction Recovery

%%SoftwaeEg neering Institute | Carnegie Mellon University //

Static Binary Analysis Strengths

* High Coverage

— Reason about most or all possible executions

e Safe

— Does not execute (possibly unsafe) code

* Widely Applicable
— Source code not needed
— Useful for end-users, researchers, sysadmins

_— PPREW: Abstraction Recovery

=== Software Engineering Institute H Carnegie Mellon University 12/9/2014

- © 2014 Carnegie Mellon University

Primary Challenge: Scalability

O

Largest Program

-~

g

Static Binary Code
Analysis Tools

~

)

Largest

Program

-

.

Static Source Code
Analysis Tools

~

/

PPREW: Abstraction Recovery

=== Software Engineering Institute H Carnegie Mellon University 12/9/2014

- © 2014 Carnegie Mellon University

The Gap Between
Binary and Source Code

push %ebp
mov %esp, %ebp

sub $0x10,%esp Functions Types
movl $0x1,-0x4(%ebp)

jmp 1d <f+0x1d>

mov -0x4(%ebp) ,%eax

imul ©x8(%ebp), %eax _ int f(int c) {

mov %eax,-0x4(%ebp) Variables int accum = 1;

subl $0x1,0x8(%ebp) for (; ¢ > 1; c--) {
cmpl $0x1,0x8(%ebp) accum = accum * c;
jg f <f+oxf> }

mov -0x4(%ebp) , %eax Control return accum;

leave Flow }

ret

_— PPREW: Abstraction Recovery

=== Software Engineering Institute | Carnegie Mellon University 12/9/2014

© 2014 Carnegie Mellon University

Abstraction Recovery

1. Choose
abstractions

2. Recover
abstractions

3. Scalable, high-
level reasoning

ﬁnt f (int x) {\

inty =1;

wite 6> € Compiled C
010100101010101
001010110111010 P o g rams
101001010101010

\mmmm&xm&x J

* Functions
Decompilation * Types
* Variables

Static Source

Code Analysis

Reverse Engineering

“Reverse engineering is the process of
analyzing a subject system to create
representations of the system at a
higher level of abstraction.”

—_ PPREW: Abstraction Recover y

=== Software Engineering Institute | Carnegie Mellon University 12/9/2014
hd i © 2014 Carnegie M

g ellon University

Reverse Engineering

a N
\ J
Abstraction

-

~

=== Software Engineering Institute

More Abstract

P

(-

~

Less Detail

o

PPREW: Abstraction Recovery
Carnegie Mellon University 12/9/2014

- © 2014 Carnegie Mellon University

Abstraction Recovery

/int f (int x) {\

Choose nile (x j
while (x > y) { Complled C

y++;

abstractions / saenonme | Programs

101001010101010

K@l@l@@l@l@l@l@l/

. Recover & Functions
| o f
abstractions Decompilation e

Reverse Engineering

Outline

* Recovering Abstractions

— C abstractions (Phoenix Decompiler)
— Gadget abstractions (Q ROP Compiler)

 Future Work and Conclusions

_— PPREW: Abstraction Recovery

=== Software Engineering Institute | Carnegie Mellon University 12/9/2014

- © 2014 Carnegie Mellon University

010100101010101
001010110111010
101001010101010
101111100010100
010101101001010
100010010101101
010101011010111

A /
Compiled

Binary

The Phoenix Decompiler

* Designed for abstraction recovery
— Correctness (new)

* Prior work: focus on manual reverse engineering

— Effective abstraction recovery

* Design: series of stages

— Each stage recovers a different abstraction
— Some are new; some are not

P PPREW: Abstraction Recovery

=== Software Engineering Institute | Carnegie Mellon University 12/9/2014

- © 2014 Carnegie Mellon University

Phoenix Overview
N N A\

010100101010101

001010110111010 Var‘iable and
101001010101010

101111100010100 =g (CE (5 Recovery — Type -~

010101101001010

100010010101101 ReCOVGI‘y
010101011010111

-) g ")

l int £ (int x) { \
l P Source-code Control |
| | Yo <€<—— Outputor < Flow :
: P Analysis Structuring l
’ !

: N - 2
. . |

a New in Phoenix /

—_ PPREW: Abstraction Recovery
—== Software Engineering Institute H Carnegie Mellon University 12/9/2014

© 2014 Carnegie Mellon University

Control Flow Structuring

if (e) < 4
15 1< “Compilation e i\
else —— \/
{..;} <« . | Y

Y\E Control Flow
Structuring

PPREW: Abstraction Recover y

Carnegie Mellon University 12/9/2014
i i © 2014 Carnegie Mellon University

Structural Analysis

* Iteratively match patterns to CFG

— Collapse matching regions

|
pd —> B1 l
B2 W
N B2 l

[f-then While Sequence

—_— PPREW: Abstraction Recovery

=== Software Engineering Institute H Carnegie Mellon University 12/9/2014

- © 2014 Carnegie Mellon University

Structural Analysis Example

WHILE

SEQ

A’\K/
7
/,

N ¥
H
-
m
wn
m
O

&Aiie (...) { if (...) {...} else {...} };

(] , e o o)

PPREW: Abstraction Recovery

Software Engineering Institute | Carnegie Mellon University 12/9/2014

- © 2014 Carnegie Mellon University

Structural Analysis Property Checklist

1. Correctness

_— PPREW: Abstraction Recover y

=== Software Engineering Institute | Carnegie Mellon University 12/9/2014
— ’ * © 2014 Carnegie Mellon Universit

Structural Analysis Property Checklist

1.—Correctness

— Not originally intended for decompilation
— Structure can be incorrect for decompilation

_— PPREW: Abstraction Recovery

=== Software Engineering Institute Carnegie Mellon University 12/9/2014

© 2014 Carnegie Mellon University

Semantics Preservation

* Reductions preserve meaning of program

/’ \ NATURAL

LOOP

y=2l j,x:l ;; =27X<=1

Non-determinism

PPREW: Abstraction Recovery

Software Engineering Institute | Carnegie Mellon University 12/9/2014

- © 2014 Carnegie Mellon University

Structural Analysis Property Checklist

1.—Correctness

— Not originally intended for decompilation
— Structure can be incorrect for decompilation

2. Effective abstraction recovery

_— PPREW: Abstraction Recovery

== Software Engineering Institute | Carnegie Mellon University 12/9/2014
d - ® ©2014Carnegi

rnegie Mellon Universit

Structural Analysis Property Checklist

1.—Correctness

— Not originally intended for decompilation
— Structure can be incorrect for decompilation

— Graceless failures for unstructured programs
* break, continue, and gotos
 Failures cascade to large subgraphs

_— PPREW: Abstraction Recovery

=== Software Engineering Institute | Carnegie Mellon University 12/9/2014
d - ® ©2014Carnegi

negie Mellon Universit,

Unrecovered Structure

s1; s1;
while (el) { if (el) { goto L2; }
if (e2) { break; } else { goto L4; }
S2; if (e2) { goto L4; }
} s2; goto L1;
s3; s3;
Original Decompiled
L !
N

SEQ

l e
v// This break edge
prevents progress

PPREW: Abstraction Recovery

Software Engineering Institute H Carnegie Mellon University 12/9/2014

- © 2014 Carnegie Mellon University

Iterative Refinement

* Remove edges that are preventing a match

— Represent in decompiled source as break, goto,
continue

— Run on remaining graph

Allows structuring algorithm to make more progress

—_ PPREW: Abstraction Recovery

=== Software Engineering Institute | Carnegie Mellon University 12/9/2014

© 2014 Carnegie Mellon University

Iterative Refinement

s1; s1;

while (el) { while (el) {
if (e2) { break; } if (e2) { break; }
S2; S2;

} }

s3; s3;

Original Decompiled

\g \ 4 WHILE
SEQ
. SEQ :

PPREW: Abstraction Recovery

Software Engineering Institute H Carnegie Mellon University 12/9/2014

- © 2014 Carnegie Mellon University

Large Scale Experiment Details

 How does Phoenix compare with state of the
art?

* Measure impact of:
— Semantics preservation
— [terative refinement

* Other decompilers

— Hex-Rays (industry state of the art)
— Boomerang (academic state of the art)

P PPREW: Abstraction Recovery

=== Software Engineering Institute H Carnegie Mellon University 12/9/2014

- © 2014 Carnegie Mellon University

Large Scale Experiment Details

 How does Phoenix compare with state of the
art?

* Measure impact of:
— Semantics preservation
— [terative refinement

* Other decompilers
— Hex-Rays (industry state of the art)

—Boeomerang{facademiestate-oftheary

* Did not terminate in <1 hour for most programs

P PPREW: Abstraction Recovery

=== Software Engineering Institute H Carnegie Mellon University 12/9/2014

© 2014 Carnegie Mellon University

Large Scale Experiment Details

* GNU coreutils 8.17, compiled with gcc

— Programs of varying complexity
— Test suite

e Metrics

— Correctness
 Number of decompiled utilities that pass unit tests
* Has not been done before on large scale!

— Control-flow structure recovery
* Count number of goto statements

P PPREW: Abstraction Recovery

=== Software Engineering Institute H Carnegie Mellon University 12/9/2014

© 2014 Carnegie Mellon University

Number of Correct Utilities

70 -
60

60 -

50 -

30 28

20 -

Phoenix Hex-Rays

_— PPREW: Abstraction Recovery

== Software Engineering Institute | Carnegie Mellon University 12/9/2014

© 2014 Carnegie Mellon University

70

60

50

40

30

20

10

Number of Correct Utilities

60

46

Phoenix

Software Engineering Institute

Phoenix (w/o semantics
preservation)

PPREW: Abstraction Recovery

Carnegie Mellon University 12/9/2014
i i © 2014 Carnegie Mellon University

Number of Correct Utilities

120
107

100 All Utilities

80

60
60
46
40
28
20
)
Hex-Rays Phoenix Phoenix (w/o semantics
preservation)

_— PPREW: Abstraction Recovery

=== Software Engineering Institute H Carnegie Mellon University 12/9/2014

© 2014 Carnegie Mellon University

Correctness

* Any incorrect abstraction can cause
incorrect decompilation
— Hex Rays

°?

— Phoenix

 All (known) correctness errors attributed to type
recovery

— Undiscovered variables

* No known problems in control flow structuring

_— PPREW: Abstraction Recovery

=== Software Engineering Institute H Carnegie Mellon University 12/9/2014
d - ® ©2014Carnegi

gie Mellon University

Control Flow Structure:

Gotos Emitted (Fewer is Better)
51

40

I

Phoenix Hex-Rays

—_ PPREW: Abstraction Recover y

=== Software Engineering Institute Carnegie Mellon University 12/9/2014
bt i © 2014 Carnegie Me

g llon University

Control Flow Structure:

Gotos Emitted (Fewer is Better)
1229

40 51

Phoenix Phoenix (w/o iterative Hex-Rays
refinement)

_— PPREW: Abstraction Recovery

=== Software Engineering Institute H Carnegie Mellon University 12/9/2014
- - ® ©2014Carnegi

gie Mellon Universit

Outline

* Recovering Abstractions

— Gadget abstractions (Q ROP Compiler)

 Future Work and Conclusions

_— PPREW: Abstraction Recovery

=== Software Engineering Institute | Carnegie Mellon University 12/9/2014

- © 2014 Carnegie Mellon University

OS Defenses

* All major operating systems
employ defenses

— DEP: Data Execution Prevention
— ASLR: Address Space Layout Randomization

* Make reliable exploitation difficult
— How difficult?

— PPREW: Abstraction Recovery
=== Software Engineering Institute

Carnegie Mellon University 12/9/2014
i i © 2014 Carnegie Mellon Universit,

Simple Control-Flow Hijack Exploit

4 Exploit h

1 Shellcode Padding Pointer

P

_ ~/
Computation Control

_— PPREW: Abstraction Recover y

=== Software Engineering Institute | Carnegie Mellon University 12/9/2014
— ’ * © 2014 Carnegie Mellon Universit

Data Execution Prevention (DEP)

4 Exploit h

Padding Pointer

==

User input is J

~/

non-executable \nnot be writable

and executable

_— W: Abstraction Recovery

PPREW:
=== Software Engineering Institute H Carnegie Mellon University 12/9/2014
— ’ * © 2014 Carnegie Mellon Universit

Bypassing DEP

* Goal: Specity exploit computation even
when DEP is enabled

* Return-oriented Programming
|[Shacham 2007]

— Use existing instructions from program it to
create self-contained gadgets

— Chain gadgets together to encode computation

R PPREW: Abstraction Recover y

=== Software Engineering Institute | Carnegie Mellon University 12/9/2014
— g * © 2014 Carnegie Mellon

Return-oriented Programming

Example: How can we write to
memory without shellcode?

_— W: Abstraction Recovery

PPREW:
—== Software Engineering Institute | Carnegie Mellon University 12/9/2014
— ’ * © 2014 Carnegie Mellon Universit

Return-oriented Programming

: nextaddr |
 Boloit) addr3 |
|€aX address |y
J |ebx addr2_|j
| value |
/// stk |
3 (\veadgef("‘\ N
addrl addr2 addr3
pop %eax | | pop %ebx| | movl %eax, (%ebx)
ret ret ret
_ /

Gadgets as Abstractions

* Gadgets are behavior specifications

— Load constant
— Store to memory
— Don’t need to reason about low-level behavior to combine them

Load to Store to

register memory

LLoad from
memory

Arithmetic

_— PPREW: Abstraction Recovery

=== Software Engineering Institute H Carnegie Mellon University 12/9/2014

- © 2014 Carnegie Mellon University

Address Space Layout Randomization (ASLR)
ASLR disabled

4 Exploit) [dg)
_— J
7 \C —

ASLR enabled
~ dg
N
\L

ASLR: Addresses are unpredlctable

Exploit A

=== Software Engineering Institute H Carnegie Mellon University 12/9/2014
et © 2014 Carnegie Mellon Universit,

Return-oriented Programming + ASLR

e Randomized code can’t be used for ROP

* But ASLR implementations do not
randomize all code...

_— PPREW: Abstraction Recover y

=== Software Engineering Institute | Carnegie Mellon University 12/9/2014
— ’ © 2014 Carnegie Mellon Universit

(Typical) Randomized Code in Linux
Unrandomized Randomized

Libc

Image
Stack

Heap

Executable

PPREW: Abstraction Recovery

Software Engineering Institute H Carnegie Mellon University 12/9/2014
i © 2014 Carnegie Mellon University

Modern Exploitation using ROP

* Program image is often the only
unrandomized code
— Small
— Program-specific

 How much unrandomized code does an
attacker need to use ROP?
W 1 1 1 il o Lot b f .
We need automatic ROP techniques that can work
with the program image

Q: Automatic ROP System

PPREW: Abstraction Recovery

=== Software Engineering Institute | Carnegie Mellon University 12/9/2014

© 2014 Carnegie Mellon University

Q: ROP Overview

Computation —> Arrangement

Assignment

4

Gadget Discovery

* Discovery: Does instruction sequence do
something we can use for our computation?

* Fast randomized test for every program
location (thousands or millions)

| |
sbb %eax, %eax;
heg %eax; ret
I

_— PPREW: Abstraction Recovery

=== Software Engineering Institute Carnegie Mellon University 12/9/2014

- © 2014 Carnegie Mellon University

Before

After

Randomized Testing

|
—_ |

| _OutReg <= InReg

sbb %eax, %eax; /‘/ Semantic
neg %eax;y Definition
I For Move

PPREW: Abstraction Recovery

Software Engineering Institute | Carnegie Mellon University 12/9/2014
’ ® ©2014Carnegi

rnegie Mellon University

Q’s Semantic Definitions/
Gadget Types

Gadget Type Semantic Definition Real World Example

MoveRegG Out <- In xchg %eax, %ebp; ret

LoadConstG Out <- Constant pop %ebp; ret

ArithmeticG Out <- In1 + In2 add %edx, %eax; ret

LoadMemG Out <- M[Addr + Offset] m(gvl 0x60(%eax), %eax;
re

StoreMemG M[Addr + Offset] <- In mov %dl, 0x13(%eax); ret

ArithmeticLoadG Out +<- M[Addr + Offset] add 0x1376dbe4(%ebx),
%ecx; (...); ret

ArithmeticStoreG M[Addr + Offset] +<-In add %eal,
0x5de474c0(%ebp); ret

PPREW: Abstraction Recovery

== Software Engineering Institute | Carnegie Mellon University 12/9/2014

© 2014 Carnegie Mellon University

Randomized Testing

* Randomized testing quickly rules out
non-gadgets
— Fast
— Enables more expensive second stage

* Second stage: program verification

_— PPREW: Abstraction Recover y

=== Software Engineering Institute | Carnegie Mellon University 12/9/2014
— ’ © 2014 Carnegie Mellon Universit

Connection to Program Verification

sum=0
while (n > 0) {
sum +=n;

sbb %eax, 7%eax
heg %eax; ret

EAX <- CF

Does the post-condition always hold
after executing program?

=== Software Engineering Institute H Carnegie Mellon University 12/9/2014
- - ® ©2014Carnegie Me

PPREW: Abstraction Recover y

g llon University

Gadget Verification

sbb %eax, %eax
neg %eax; ret

EAX <- CF

Weakest @
Precondition

Valid (Gadget)
@, Validity Check Invalid (not
Gadget)

—_ PPREW: Abstraction Recover y

=== Software Engineering Institute | Carnegie Mellon University 12/9/2014
= l © 2014 Carnegie M

g ellon University

Semantic-based Gadget Discovery

* Qis better at finding gadgets than I am!

imul $1, %eax, %ebx Move %eax to %ebx

ret

lea (%ebx,%ecx,1), %eax Store %ebx+%ecx in %eax
ret

sbb %eax, %eax; neg %eax Move carry flag to %eax
ret

—_ PPREW: Abstraction Recovery

=== Software Engineering Institute | Carnegie Mellon University 12/9/2014
- - ® ©2014Carnegi

rnegie Mellon University

Q: ROP Overview

Computation —> Arrangement

Assignment

4

Research Questions

How much unrandomized code is
sufficient to create ROP payloads?

— Detail: payloads call any functions in libc
— system, execv, connect, mprotect

_— PPREW: Abstraction Recover y

=== Software Engineering Institute | Carnegie Mellon University 12/9/2014
— ’ * © 2014 Carnegie Mellon Universit

ROP Success Probability

| [| | | |
1e+04 2e+04 5e+04 1e+05 2e+05 5e+05 1e+06

2

@)

= _

~

@) o]

L R
o _

'E 9 L Call libc functions in 80% of }
E o programs >= true (ZIOKB)

® '

@)

O

o

Program Size (bytes)

_— PPREW: Abstraction Recovery

=== Software Engineering Institute H Carnegie Mellon University 12/9/2014
d - ® ©2014Carnegi

gie Mellon University

Research Questions

Can Q automatically add ROP
payloads to existing exploits
for real programs?

_— PPREW: Abstraction Recover y

=== Software Engineering Institute | Carnegie Mellon University 12/9/2014
— ’ * © 2014 Carnegie Mellon Universit

Real Exploits

* Q was able to automatically add ROP to nine

exploits downloaded from exploit-db.com

Name Total 0S
Time

Free CD to MP3 Converter 130s Windows 7
Fatplayer 133s Windows 7
A-PDF Converter 378s Windows 7
A-PDF Converter (SEH exploit) 357s Windows 7
MP3 CD Converter Pro 158s Windows 7
rsync 65s Linux
opendchub 225s Linux

gv 237s Linux
Proftpd 44s Linux

File Edit View Search Terminal Help
ed@ed-VirtualBox:~/traces/pintraces/examples/Q-traces/rsync$ |:|

_— PPREW: Abstraction Recovery

=== Software Engineering Institute | Carnegie Mellon University 12/9/2014 61

© 2014 Carnegie Mellon University

Outline

 Future Work and Conclusions

—_— PPREW: Abstraction Recovery

=== Software Engineering Institute | Carnegie Mellon University 12/9/2014

© 2014 Carnegie Mellon University

Abstraction Recovery Questions

* Systems: How do we build systems that
— Recover abstractions?
— Use abstractions?

* Theory: When is it possible to recover abstractions?
— Observable behaviors preserved by compilation

* Scalability: How does recovering and utilizing
abstractions improve scalability?

— ROP (150x)
— C verification (15x)

_— PPREW: Abstraction Recovery

=== Software Engineering Institute H Carnegie Mellon University 12/9/2014
- - ® ©2014Carnegi

gie Mellon University

Future Work

* Certified decompilation

— Prove that binary = C translation is correct

* Optimal abstraction recovery

— Provably optimal algorithms (i.e., minimum gotos)

 Additional abstractions & architectures
— C++, ARM, Dalvik

PPREW: Abstraction Recovery

=== Software Engineering Institute | Carnegie Mellon University 12/9/2014

© 2014 Carnegie Mellon University

Thanks to My Great Co-authors

Thanassis David JongHyup Maverick
Avgerinos Brumley Lee Woo

PPREW: Abstraction Recover y

== Software Engineering Institute | Carnegie Mellon University 12/9/2014
— ’ © 2014 Carnegie Mellon Universit

Conclusion

* Abstraction Recovery

— Recovering abstractions helps static binary analysis

* Phoenix decompiler

— Goal: Correct, effective decompilation
— New control-flow structuring algorithm

* Q ROP Compiler

— Takeaway: Unrandomized code is dangerous
— 20KB makes DEP+ASLR ineffective

P PPREW: Abstraction Recovery

=== Software Engineering Institute H Carnegie Mellon University 12/9/2014

© 2014 Carnegie Mellon University

Thanks ©

* Questions?

Edward J. Schwartz
eschwartz@cert.org
http://www.ece.cmu.edu/~ejschwar

_— PPREW: Abstraction Recovery

=== Software Engineering Institute | Carnegie Mellon University 12/9/2014

- © 2014 Carnegie Mellon University

—_ PPREW: Abstraction Recovery

=== Software Engineering Institute | Carnegie Mellon University 12/9/2014

© 2014 Carnegie Mellon University

